הוספת תוויות לתמונות באמצעות ערכת ML ב-iOS

אתם יכולים להשתמש ב-ML Kit כדי להוסיף תוויות לאובייקטים שזוהו בתמונה. מודל ברירת המחדל שסופק עם ערכת ML Kit תומכת ביותר מ-400 תוויות שונות.

רוצה לנסות?

לפני שמתחילים

  1. כוללים ב-Podfile את רצפי ה-ML Kit הבאים:
    pod 'GoogleMLKit/ImageLabeling', '3.2.0'
    
  2. אחרי שמתקינים או מעדכנים את קבוצות ה-Pod של הפרויקט, פותחים את פרויקט Xcode באמצעות .xcworkspace יש תמיכה ב-ML Kit ב-Xcode מגרסה 12.4 ואילך.

עכשיו אפשר להוסיף תוויות לתמונות.

1. הכנת תמונת הקלט

יצירת אובייקט VisionImage באמצעות UIImage או CMSampleBuffer

אם משתמשים ב-UIImage, צריך לבצע את השלבים הבאים:

  • יוצרים אובייקט VisionImage באמצעות UIImage. חשוב להקפיד לציין .orientation נכון.

    Swift

    let image = VisionImage(image: UIImage)
    visionImage.orientation = image.imageOrientation

    Objective-C

    MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image];
    visionImage.orientation = image.imageOrientation;

אם משתמשים ב-CMSampleBuffer, צריך לבצע את השלבים הבאים:

  • לציין את הכיוון של נתוני התמונה שנכללים ברכיב CMSampleBuffer

    כדי לקבל את הכיוון של התמונה:

    Swift

    func imageOrientation(
      deviceOrientation: UIDeviceOrientation,
      cameraPosition: AVCaptureDevice.Position
    ) -> UIImage.Orientation {
      switch deviceOrientation {
      case .portrait:
        return cameraPosition == .front ? .leftMirrored : .right
      case .landscapeLeft:
        return cameraPosition == .front ? .downMirrored : .up
      case .portraitUpsideDown:
        return cameraPosition == .front ? .rightMirrored : .left
      case .landscapeRight:
        return cameraPosition == .front ? .upMirrored : .down
      case .faceDown, .faceUp, .unknown:
        return .up
      }
    }
          

    Objective-C

    - (UIImageOrientation)
      imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                             cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored
                                                                : UIImageOrientationRight;
    
        case UIDeviceOrientationLandscapeLeft:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored
                                                                : UIImageOrientationUp;
        case UIDeviceOrientationPortraitUpsideDown:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored
                                                                : UIImageOrientationLeft;
        case UIDeviceOrientationLandscapeRight:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored
                                                                : UIImageOrientationDown;
        case UIDeviceOrientationUnknown:
        case UIDeviceOrientationFaceUp:
        case UIDeviceOrientationFaceDown:
          return UIImageOrientationUp;
      }
    }
          
  • יוצרים אובייקט VisionImage באמצעות אובייקט וכיוון CMSampleBuffer:

    Swift

    let image = VisionImage(buffer: sampleBuffer)
    image.orientation = imageOrientation(
      deviceOrientation: UIDevice.current.orientation,
      cameraPosition: cameraPosition)

    Objective-C

     MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer];
     image.orientation =
       [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                    cameraPosition:cameraPosition];

2. הגדרה והפעלה של מתייג התמונות

כדי להוסיף תוויות לאובייקטים בתמונה, צריך להעביר את האובייקט VisionImage אל השיטה processImage() של ImageLabeler.

  1. קודם כול, מקבלים מופע של ImageLabeler.

Swift

let labeler = ImageLabeler.imageLabeler()

// Or, to set the minimum confidence required:
// let options = ImageLabelerOptions()
// options.confidenceThreshold = 0.7
// let labeler = ImageLabeler.imageLabeler(options: options)

Objective-C

MLKImageLabeler *labeler = [MLKImageLabeler imageLabeler];

// Or, to set the minimum confidence required:
// MLKImageLabelerOptions *options =
//         [[MLKImageLabelerOptions alloc] init];
// options.confidenceThreshold = 0.7;
// MLKImageLabeler *labeler =
//         [MLKImageLabeler imageLabelerWithOptions:options];
  1. לאחר מכן, מעבירים את התמונה ל-method processImage():

Swift

labeler.process(image) { labels, error in
    guard error == nil, let labels = labels else { return }

    // Task succeeded.
    // ...
}

Objective-C

[labeler processImage:image
completion:^(NSArray *_Nullable labels,
            NSError *_Nullable error) {
   if (error != nil) { return; }

   // Task succeeded.
   // ...
}];

3. אחזור מידע על אובייקטים מתויגים

אם הוספת תוויות לתמונות מצליחה, ה-handler של ההשלמה מקבל מערך של ImageLabel אובייקטים. כל אובייקט ImageLabel מייצג משהו שמסומן בתמונה. הדגם הבסיסי תומך ב-יותר מ-400 תוויות שונות. אפשר לקבל את תיאור הטקסט של כל תווית, אינדקס בין כל התוויות הנתמכות על ידי את המודל ואת רמת הסמך של ההתאמה. לדוגמה:

Swift

for label in labels {
    let labelText = label.text
    let confidence = label.confidence
    let index = label.index
}

Objective-C

for (MLKImageLabel *label in labels) {
   NSString *labelText = label.text;
   float confidence = label.confidence;
   NSInteger index = label.index;
}

טיפים לשיפור הביצועים בזמן אמת

כדי להוסיף תווית לתמונות באפליקציה בזמן אמת, צריך לפעול לפי השלבים הבאים כדי להשיג את קצבי הפריימים הטובים ביותר:

  • כדי לעבד פריימים של וידאו, צריך להשתמש ב-API הסינכרוני results(in:) של מתייג התמונות. שיחת טלפון שיטה זו מ AVCaptureVideoDataOutputSampleBufferDelegate פונקציה captureOutput(_, didOutput:from:) לקבלת תוצאות בסרטון הנתון באופן סינכרוני מסגרת. שמור את של AVCaptureVideoDataOutput alwaysDiscardsLateVideoFrames בתור true כדי לווסת קריאות למתייג התמונות. אם תג חדש פריים הווידאו יהפוך לזמין כאשר מתייג התמונות פועל, הוא יוסר.
  • אם משתמשים בפלט של מתייג התמונות כדי להציג גרפיקה בשכבת-על מקבלים קודם את התוצאה מ-ML Kit ואז מעבדים את התמונה וליצור שכבת-על בשלב אחד. כך תוכלו להציג את משטח המסך רק פעם אחת לכל מסגרת קלט שעברה עיבוד. אפשר לעיין בתצוגה updatePreviewOverlayViewWithLastFrame בדוגמת המדריך למתחילים ל-ML Kit.