Vous pouvez utiliser ML Kit pour étiqueter des objets reconnus dans une image. Le modèle par défaut fourni avec ML Kit accepte plus de 400 étiquettes différentes.
Caractéristique | Sans bundles | Regroupées |
---|---|---|
Implémentation | Le modèle est téléchargé de manière dynamique via les services Google Play. | Le modèle est lié de manière statique à votre modèle au moment de la compilation. |
Taille d'application | Augmentation d'environ 200 Ko. | Augmentation de la taille d'environ 5,7 Mo |
Délai d'initialisation | Vous devrez peut-être attendre que le modèle soit téléchargé pour la première utilisation. | Le modèle est disponible immédiatement |
Essayer
- Testez l'application exemple pour voir un exemple d'utilisation de cette API.
Avant de commencer
Dans le fichier
build.gradle
au niveau du projet, veillez à inclure le dépôt Maven de Google dans les sectionsbuildscript
etallprojects
.Ajoutez les dépendances des bibliothèques Android ML Kit au fichier Gradle de votre module, qui est généralement
app/build.gradle
. Choisissez l'une des dépendances suivantes en fonction de vos besoins:Pour regrouper le modèle et votre application:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:image-labeling:17.0.7' }
Pour utiliser le modèle dans les services Google Play:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8' }
Si vous choisissez d'utiliser le modèle dans les services Google Play, vous pouvez configurer votre application pour qu'elle télécharge automatiquement le modèle sur l'appareil après son installation depuis le Play Store. Pour ce faire, ajoutez la déclaration suivante au fichier
AndroidManifest.xml
de votre application:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ica" > <!-- To use multiple models: android:value="ica,model2,model3" --> </application>
Vous pouvez également vérifier explicitement la disponibilité du modèle et demander son téléchargement via l'API ModuleInstallClient des services Google Play.
Si vous n'activez pas les téléchargements de modèles au moment de l'installation ou si vous demandez un téléchargement explicite, le modèle est téléchargé la première fois que vous exécutez l'étiqueteur. Les requêtes que vous effectuez avant la fin du téléchargement ne génèrent aucun résultat.
Vous êtes maintenant prêt à étiqueter les images.
1. Préparer l'image d'entrée
Créez un objetInputImage
à partir de votre image.
L'étiqueteur d'images s'exécute plus rapidement lorsque vous utilisez un élément Bitmap
ou, si vous utilisez l'API camera2, un élément YUV_420_888 media.Image
, qui est recommandé dans la mesure du possible.
Vous pouvez créer un objet InputImage
à partir de différentes sources, chacune étant expliquée ci-dessous.
Utiliser un media.Image
Pour créer un objet InputImage
à partir d'un objet media.Image
, par exemple lorsque vous capturez une image depuis l'appareil photo d'un appareil, transmettez l'objet media.Image
et la rotation de l'image à InputImage.fromMediaImage()
.
Si vous utilisez la bibliothèque
CameraX, les classes OnImageCapturedListener
et ImageAnalysis.Analyzer
calculent la valeur de rotation pour vous.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Si vous n'utilisez pas de bibliothèque de caméra qui fournit le degré de rotation de l'image, vous pouvez la calculer à partir du degré de rotation de l'appareil et de l'orientation du capteur de l'appareil:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Transmettez ensuite l'objet media.Image
et la valeur de degré de rotation à InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Utiliser un URI de fichier
Pour créer un objet InputImage
à partir d'un URI de fichier, transmettez le contexte de l'application et l'URI de fichier à InputImage.fromFilePath()
. Cela s'avère utile lorsque vous utilisez un intent ACTION_GET_CONTENT
pour inviter l'utilisateur à sélectionner une image dans son application de galerie.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Utiliser un ByteBuffer
ou un ByteArray
Pour créer un objet InputImage
à partir d'un ByteBuffer
ou d'un ByteArray
, calculez d'abord le degré de rotation de l'image comme décrit précédemment pour l'entrée media.Image
.
Créez ensuite l'objet InputImage
avec la mémoire tampon ou le tableau, ainsi que la hauteur, la largeur, le format d'encodage des couleurs et le degré de rotation de l'image:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Utiliser un Bitmap
Pour créer un objet InputImage
à partir d'un objet Bitmap
, effectuez la déclaration suivante:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
L'image est représentée par un objet Bitmap
accompagné de degrés de rotation.
2. Configurer et exécuter l'étiqueteur d'images
Pour ajouter des libellés aux objets d'une image, transmettez l'objetInputImage
à la méthode process
de ImageLabeler
.
Commencez par obtenir une instance de
ImageLabeler
.Si vous souhaitez utiliser l'étiqueteur d'images sur l'appareil, procédez comme suit:
Kotlin
// To use default options: val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS) // Or, to set the minimum confidence required: // val options = ImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = ImageLabeling.getClient(options)
Java
// To use default options: ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS); // Or, to set the minimum confidence required: // ImageLabelerOptions options = // new ImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // ImageLabeler labeler = ImageLabeling.getClient(options);
- Transmettez ensuite l'image à la méthode
process()
:
Kotlin
labeler.process(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.process(image) .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() { @Override public void onSuccess(List<ImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
3. Obtenir des informations sur les objets étiquetés
Si l'opération d'étiquetage d'images aboutit, une liste d'objetsImageLabel
est transmise à l'écouteur de réussite. Chaque objet ImageLabel
représente un élément étiqueté dans l'image. Le modèle de base accepte plus de 400 étiquettes différentes.
Vous pouvez obtenir la description textuelle de chaque étiquette, l'index de toutes les étiquettes compatibles avec le modèle et le score de confiance de la correspondance. Exemple :
Kotlin
for (label in labels) { val text = label.text val confidence = label.confidence val index = label.index }
Java
for (ImageLabel label : labels) { String text = label.getText(); float confidence = label.getConfidence(); int index = label.getIndex(); }
Conseils pour améliorer les performances en temps réel
Si vous souhaitez ajouter des étiquettes aux images dans une application en temps réel, suivez ces consignes pour obtenir les meilleures fréquences d'images:
- Si vous utilisez l'API
Camera
oucamera2
, limitez les appels à l'étiqueteur d'images. Si un nouveau cadre vidéo est disponible pendant l'exécution de l'étiqueteur d'images, déposez-le. Pour obtenir un exemple, consultez la classeVisionProcessorBase
dans l'application exemple de démarrage rapide. - Si vous utilisez l'API
CameraX
, assurez-vous que la stratégie de contre-pression est définie sur sa valeur par défautImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. Ainsi, une seule image sera fournie à la fois pour analyse. Si d'autres images sont produites lorsque l'analyseur est occupé, elles seront supprimées automatiquement et ne seront pas mises en file d'attente pour la diffusion. Une fois que l'image analysée est fermée en appelant ImageProxy.close(), la dernière image suivante est diffusée. - Si vous utilisez la sortie de l'étiqueteur d'image pour superposer des éléments graphiques à l'image d'entrée, commencez par obtenir le résultat de ML Kit, puis affichez l'image et la superposition en une seule étape. Cela s'affiche sur la surface d'affichage une seule fois pour chaque frame d'entrée. Pour obtenir un exemple, consultez les classes
CameraSourcePreview
etGraphicOverlay
dans l'application exemple de démarrage rapide. - Si vous utilisez l'API Camera2, enregistrez des images au format
ImageFormat.YUV_420_888
. Si vous utilisez l'ancienne API Camera, capturez des images au formatImageFormat.NV21
.