Bias–variance tradeoff,维基百科。
Brooks, S.、Gelman, A.,General Methods for Monitoring Convergence of Iterative Simulations,1998 年。
Chen, A.、Chan, D.、Koehler, J.、Wang, Y.、Sun, Y.、Jin, Y.、Perry, M.,Google, Inc.,Bias Correction For Paid Search In Media Mix Modeling,2018 年。
Clark, Michael,Bayesian Basics: A conceptual Introduction with application in R and Stan。密歇根大学。(2015 年 9 月 11 日)。
Gelman, A.、Rubin, D.,Inference from Iterative Simulation Using Multiple Sequences,1992 年。
Hernán MA、Robins JM(2020 年)。Causal Inference: What If。Boca Raton:Chapman & Hall/CRC。
Jin, Y.、Wang, Y.、Sun, Y.、Chan, D.、Koehler, J.,Google Inc.,Bayesian Methods for Media Mix Modeling with Carryover and Shape Effects,2017 年。
Ng, E.、Wang, Z.、& Dai, A.,Bayesian Time Varying Coefficient Model with Applications to Marketing Mix Modeling,2021 年。
Pearl, Judea,Causality。剑桥大学出版社。(2009 年 9 月 14 日)ISBN 9781139643986。
样条(数学),Wikipedia。
Sun, Y.、Wang, Y.、Jin, Y.、Chan, D.、Koehler, J.,Google Inc.,Geo-level Bayesian Hierarchical Media Mix Modeling,2017 年。
Wang, Y.、Jin, Y.、Sun, Y.、Chan, D.、Koehler, J.,Google Inc.,A Hierarchical Bayesian Approach to Improve Media Mix Models Using Category Data,2017 年。
Zhang, Y.、Wurm, M.、Li, E.、Wakim, A.、Kelly, J.、Price, B.、Liu, Y.,Google Inc.,Media Mix Model Calibration With Bayesian Priors,2023 年。
Zhang, Y.、Wurm, M.、Wakim, A.、Li, E.、Liu, Y.,Google Inc.,Bayesian Hierarchical Media Mix Model Incorporating Reach and Frequency Data,2023 年。
参考文件
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-02-19。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["没有我需要的信息","missingTheInformationINeed","thumb-down"],["太复杂/步骤太多","tooComplicatedTooManySteps","thumb-down"],["内容需要更新","outOfDate","thumb-down"],["翻译问题","translationIssue","thumb-down"],["示例/代码问题","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-02-19。"],[[["This compilation of resources focuses on Bayesian methods and their applications, particularly in media mix modeling (MMM) for marketing analysis."],["Several resources explore the use of Bayesian hierarchical models, incorporating factors like carryover effects, shape effects, geographic variations, and category data to enhance MMM accuracy."],["The list also includes foundational materials on Bayesian statistics, causal inference, and convergence diagnostics for iterative simulations, providing a comprehensive understanding of the underlying concepts."],["Resources from Google researchers showcase cutting-edge advancements in MMM, including bias correction for paid search, the integration of reach and frequency data, and the utilization of Bayesian priors for model calibration."],["This collection serves as a valuable guide for researchers and practitioners seeking to leverage Bayesian techniques for advanced marketing measurement and decision-making."]]],["The documents cover Bayesian methods and their application in media mix modeling (MMM). Key topics include: bias-variance tradeoff; convergence monitoring for iterative simulations; causal inference; Bayesian hierarchical modeling to improve MMM with category data, reach, frequency, carryover, and shape effects; bias correction for paid search in MMM; and calibration of MMM using Bayesian priors. Splines and TensorFlow Probability are also mentioned, with general bayesian concepts. The work was carried out by researchers in different academic institutions or at google.\n"]]