文本分类是一项基本的机器学习问题,可应用于各种产品。在本指南中,我们将文本分类工作流程分解为多个步骤。对于每个步骤,我们都根据特定数据集的特征建议了自定义方法。具体来说,我们会根据样本数量与每个样本的字数之比,建议一种能让您快速获得接近最佳性能的模型类型。其他步骤都是围绕此选择设计的。我们希望,遵循本指南、使用随附的代码和流程图,有助于您学习、理解并快速获得文本分类问题的初步解决方案。
总结
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-07-27。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["没有我需要的信息","missingTheInformationINeed","thumb-down"],["太复杂/步骤太多","tooComplicatedTooManySteps","thumb-down"],["内容需要更新","outOfDate","thumb-down"],["翻译问题","translationIssue","thumb-down"],["示例/代码问题","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-07-27。"],[[["\u003cp\u003eThis guide provides a structured workflow for text classification, breaking it down into manageable steps tailored to your dataset's characteristics.\u003c/p\u003e\n"],["\u003cp\u003eModel selection is guided by the ratio of samples to words per sample, helping you quickly identify a suitable model for optimal performance.\u003c/p\u003e\n"],["\u003cp\u003eThe guide includes code and a flowchart to facilitate learning, understanding, and implementing a first-cut solution for your text classification problem.\u003c/p\u003e\n"]]],[],null,[]]