[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["没有我需要的信息","missingTheInformationINeed","thumb-down"],["太复杂/步骤太多","tooComplicatedTooManySteps","thumb-down"],["内容需要更新","outOfDate","thumb-down"],["翻译问题","translationIssue","thumb-down"],["示例/代码问题","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-07-27。"],[[["\u003cp\u003eInference involves using a trained model to make predictions on unlabeled examples, and it can be done statically or dynamically.\u003c/p\u003e\n"],["\u003cp\u003eStatic inference generates predictions in advance and caches them, making it suitable for scenarios where prediction speed is critical but limiting its ability to handle uncommon inputs.\u003c/p\u003e\n"],["\u003cp\u003eDynamic inference generates predictions on demand, offering flexibility for diverse inputs but potentially increasing latency and computational demands.\u003c/p\u003e\n"],["\u003cp\u003eChoosing between static and dynamic inference depends on factors like model complexity, desired prediction speed, and the nature of the input data.\u003c/p\u003e\n"],["\u003cp\u003eStatic inference is advantageous when cost and prediction verification are prioritized, while dynamic inference excels in handling diverse, real-time predictions.\u003c/p\u003e\n"]]],[],null,[]]