[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["缺少我需要的資訊","missingTheInformationINeed","thumb-down"],["過於複雜/步驟過多","tooComplicatedTooManySteps","thumb-down"],["過時","outOfDate","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["示例/程式碼問題","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2024-11-10 (世界標準時間)。"],[[["Machine learning engineers use two primary strategies to mitigate bias in models: augmenting training data and adjusting the model's loss function."],["Augmenting training data involves collecting additional data to address missing, incorrect, or skewed data, but it can be infeasible due to data availability or resource constraints."],["Adjusting the model's loss function involves using fairness-aware optimization functions like MinDiff or Counterfactual Logit Pairing to penalize errors based on sensitive attributes and counteract imbalances in training data."],["MinDiff aims to balance errors between different data slices by penalizing differences in prediction distributions, while Counterfactual Logit Pairing penalizes discrepancies in predictions for similar examples with different sensitive attribute values."],["Choosing the right bias-mitigation technique depends on the specific use case of the model, and augmenting training data and adjusting the loss function can be used in conjunction for optimal bias reduction."]]],[]]