[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["必要な情報がない","missingTheInformationINeed","thumb-down"],["複雑すぎる / 手順が多すぎる","tooComplicatedTooManySteps","thumb-down"],["最新ではない","outOfDate","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["サンプル / コードに問題がある","samplesCodeIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2024-04-22 UTC。"],[[["Leverage BigQuery solutions to address business challenges using exported data from your Google Analytics property."],["Predict user churn in gaming apps by employing BigQuery ML to analyze Google Analytics data and identify potential churn risks."],["Measure and debug web performance by sending Web Vitals data to Google Analytics, and leverage BigQuery and Data Studio for in-depth analysis."]]],["The guides provide solutions for leveraging Google Analytics data exported to BigQuery. One guide details using BigQuery ML to build propensity models for gaming apps, enabling churn prediction by determining user return likelihood. Another guide explains how to send Web Vitals data to Google Analytics, export it to BigQuery, and analyze it further in Data Studio for performance measurement and debugging.\n"]]