Kutu Paketleme Sorunu

Çoklu sırt çantası problemi gibi, çöp kovası problemi de öğelerin çöp kutusuna taşınmasını içerir. Ancak kova paketleme sorununun farklı bir amacı var: Tüm eşyaların bulunacağı en az çöp kutusunu bulun.

Aşağıda, iki sorun arasındaki farkların özeti verilmiştir:

  • Çoklu sırt çantası sorunu: Ürünlerin bir alt kümesini farklı kapasitelere sahip sabit sayıda kutuya paketleyin. Böylece paketlenen öğelerin toplam değeri en yüksek değere ulaşır.

  • Kutu ambalajı sorunu: Gerektiği kadar ortak kapasiteye sahip birden fazla çöp kutusu varsa tüm öğelerin bulunacağı az sayıda çöp kutusunu bulun. Bu sorunda hedef, değer içermediğinden öğelere değer atanmaz.

Bir sonraki örnekte, bir ambalaj ambalajı sorununun nasıl çözüleceği gösterilmektedir.

Örnek

Bu örnekte, çeşitli ağırlıklara sahip öğelerin, ortak kapasiteye sahip bir kutu kutuda paketlenmesi gerekir. Tüm öğelerin depolanacağı yeterli sayıda kutu olduğu varsayıldığında sorun, yeterli sayıda öğe bulunabilecek en az öğenin bulunmasıdır.

Aşağıdaki bölümlerde bu sorunu çözen programlar sunulmaktadır. Programların tamamı için Tamamlanan programlar başlıklı makaleyi inceleyin.

Bu örnekte MPSolver sarmalayıcı kullanılmıştır.

Kitaplıkları içe aktar

Aşağıdaki kod, gerekli kitaplıkları içe aktarır.

Python

from ortools.linear_solver import pywraplp

C++

#include <iostream>
#include <memory>
#include <numeric>
#include <ostream>
#include <vector>

#include "ortools/linear_solver/linear_expr.h"
#include "ortools/linear_solver/linear_solver.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;

C#

using System;
using Google.OrTools.LinearSolver;

Verileri oluşturma

Aşağıdaki kod, örnek verileri oluşturur.

Python

def create_data_model():
    """Create the data for the example."""
    data = {}
    weights = [48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30]
    data["weights"] = weights
    data["items"] = list(range(len(weights)))
    data["bins"] = data["items"]
    data["bin_capacity"] = 100
    return data

C++

struct DataModel {
  const std::vector<double> weights = {48, 30, 19, 36, 36, 27,
                                       42, 42, 36, 24, 30};
  const int num_items = weights.size();
  const int num_bins = weights.size();
  const int bin_capacity = 100;
};

Java

static class DataModel {
  public final double[] weights = {48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30};
  public final int numItems = weights.length;
  public final int numBins = weights.length;
  public final int binCapacity = 100;
}

C#

class DataModel
{
    public static double[] Weights = { 48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30 };
    public int NumItems = Weights.Length;
    public int NumBins = Weights.Length;
    public double BinCapacity = 100.0;
}

Bu veriler aşağıdakileri içerir:

  • weights: Öğelerin ağırlıklarını içeren bir vektördür.
  • bin_capacity: Kutuların kapasitesini gösteren tek bir sayı.

Kutu sayısını en aza indirme hedefi değer içermediğinden, öğelere atanmış değer yoktur.

num_bins öğesinin öğe sayısına ayarlandığını unutmayın. Bunun nedeni, problemin bir çözümü varsa her öğenin bin kapasitesinden az veya bu ağırlığa eşit olması gerekir. Bu durumda, ihtiyacınız olan maksimum bölme sayısı öğe sayısıdır. Çünkü her öğeyi her zaman ayrı bir kutuya yerleştirebilirsiniz.

Çözümleyiciyi bildirme

Çözücü aşağıdaki kodla belirtilmiştir.

Python

  # Create the mip solver with the SCIP backend.
  solver = pywraplp.Solver.CreateSolver("SCIP")

  if not solver:
      return

C++

  // Create the mip solver with the SCIP backend.
  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

Java

// Create the linear solver with the SCIP backend.
MPSolver solver = MPSolver.createSolver("SCIP");
if (solver == null) {
  System.out.println("Could not create solver SCIP");
  return;
}

C#

      // Create the linear solver with the SCIP backend.
      Solver solver = Solver.CreateSolver("SCIP");
      if (solver is null)
      {
          return;
      }

Değişkenleri oluşturma

Aşağıdaki kod, program için değişkenler oluşturur.

Python

# Variables
# x[i, j] = 1 if item i is packed in bin j.
x = {}
for i in data["items"]:
    for j in data["bins"]:
        x[(i, j)] = solver.IntVar(0, 1, "x_%i_%i" % (i, j))

# y[j] = 1 if bin j is used.
y = {}
for j in data["bins"]:
    y[j] = solver.IntVar(0, 1, "y[%i]" % j)

C++

std::vector<std::vector<const MPVariable*>> x(
    data.num_items, std::vector<const MPVariable*>(data.num_bins));
for (int i = 0; i < data.num_items; ++i) {
  for (int j = 0; j < data.num_bins; ++j) {
    x[i][j] = solver->MakeIntVar(0.0, 1.0, "");
  }
}
// y[j] = 1 if bin j is used.
std::vector<const MPVariable*> y(data.num_bins);
for (int j = 0; j < data.num_bins; ++j) {
  y[j] = solver->MakeIntVar(0.0, 1.0, "");
}

Java

MPVariable[][] x = new MPVariable[data.numItems][data.numBins];
for (int i = 0; i < data.numItems; ++i) {
  for (int j = 0; j < data.numBins; ++j) {
    x[i][j] = solver.makeIntVar(0, 1, "");
  }
}
MPVariable[] y = new MPVariable[data.numBins];
for (int j = 0; j < data.numBins; ++j) {
  y[j] = solver.makeIntVar(0, 1, "");
}

C#

Variable[,] x = new Variable[data.NumItems, data.NumBins];
for (int i = 0; i < data.NumItems; i++)
{
    for (int j = 0; j < data.NumBins; j++)
    {
        x[i, j] = solver.MakeIntVar(0, 1, $"x_{i}_{j}");
    }
}
Variable[] y = new Variable[data.NumBins];
for (int j = 0; j < data.NumBins; j++)
{
    y[j] = solver.MakeIntVar(0, 1, $"y_{j}");
}

Çoklu sırt çantası örneğinde olduğu gibi, i öğesi j bölmesine yerleştirilirse değeri 1 ve aksi halde 0 olan bir x[(i, j)] değişken dizisi tanımlarsınız.

Kutu paketi için ayrıca bir değişken dizisi (y[j], bin j öğesi kullanılırsa değeri 1'dir (yani pakette herhangi bir öğe varsa) ve 0 değilse bunu tanımlarsınız. y[j] toplamı, kullanılan bölmelerin sayısıdır.

Sınırlamaları tanımlama

Sorunun kısıtlamaları aşağıdaki kodda tanımlanır:

Python

# Constraints
# Each item must be in exactly one bin.
for i in data["items"]:
    solver.Add(sum(x[i, j] for j in data["bins"]) == 1)

# The amount packed in each bin cannot exceed its capacity.
for j in data["bins"]:
    solver.Add(
        sum(x[(i, j)] * data["weights"][i] for i in data["items"])
        <= y[j] * data["bin_capacity"]
    )

C++

// Create the constraints.
// Each item is in exactly one bin.
for (int i = 0; i < data.num_items; ++i) {
  LinearExpr sum;
  for (int j = 0; j < data.num_bins; ++j) {
    sum += x[i][j];
  }
  solver->MakeRowConstraint(sum == 1.0);
}
// For each bin that is used, the total packed weight can be at most
// the bin capacity.
for (int j = 0; j < data.num_bins; ++j) {
  LinearExpr weight;
  for (int i = 0; i < data.num_items; ++i) {
    weight += data.weights[i] * LinearExpr(x[i][j]);
  }
  solver->MakeRowConstraint(weight <= LinearExpr(y[j]) * data.bin_capacity);
}

Java

double infinity = java.lang.Double.POSITIVE_INFINITY;
for (int i = 0; i < data.numItems; ++i) {
  MPConstraint constraint = solver.makeConstraint(1, 1, "");
  for (int j = 0; j < data.numBins; ++j) {
    constraint.setCoefficient(x[i][j], 1);
  }
}
// The bin capacity contraint for bin j is
//   sum_i w_i x_ij <= C*y_j
// To define this constraint, first subtract the left side from the right to get
//   0 <= C*y_j - sum_i w_i x_ij
//
// Note: Since sum_i w_i x_ij is positive (and y_j is 0 or 1), the right side must
// be less than or equal to C. But it's not necessary to add this constraint
// because it is forced by the other constraints.

for (int j = 0; j < data.numBins; ++j) {
  MPConstraint constraint = solver.makeConstraint(0, infinity, "");
  constraint.setCoefficient(y[j], data.binCapacity);
  for (int i = 0; i < data.numItems; ++i) {
    constraint.setCoefficient(x[i][j], -data.weights[i]);
  }
}

C#

for (int i = 0; i < data.NumItems; ++i)
{
    Constraint constraint = solver.MakeConstraint(1, 1, "");
    for (int j = 0; j < data.NumBins; ++j)
    {
        constraint.SetCoefficient(x[i, j], 1);
    }
}

for (int j = 0; j < data.NumBins; ++j)
{
    Constraint constraint = solver.MakeConstraint(0, Double.PositiveInfinity, "");
    constraint.SetCoefficient(y[j], data.BinCapacity);
    for (int i = 0; i < data.NumItems; ++i)
    {
        constraint.SetCoefficient(x[i, j], -DataModel.Weights[i]);
    }
}

Kısıtlamalar aşağıdaki gibidir:

  • Her öğe tam olarak bir kutuya yerleştirilmelidir. Bu kısıtlama, j içindeki tüm kutulardan elde edilen x[i][j] toplamının 1'e eşit olması şartıyla ayarlanır. Tüm öğelerin paketlenmesi gerekmediği için toplamanın yalnızca 1'den küçük veya 1'e eşit olması gereken çoklu sırt çantası probleminden farklı olduğunu unutmayın.
  • Kutu başına paketlenen toplam ağırlık, kapasitesini aşamaz. Bu, çoklu sırt çantası sorunundakiyle aynı kısıtlamadır ancak bu durumda, eşitsizliklerin sağ tarafındaki bin kapasitesini y[j] ile çarparsınız.

    Neden y[j] ile çarpılsın? Herhangi bir öğe j kutusunda paketlenirse y[j] öğesini 1'e eşit olmaya zorlar. Bunun nedeni, y[j] öğesinin 0 olması durumunda eşitsizliğin sağ tarafının 0 olması, sol taraftaki bölmenin ağırlığının 0'dan büyük olması ve böylece kısıtlamayı ihlal etmesidir. Bu işlem y[j] değişkenlerini sorunun amacına bağlar. Şimdilik, çözümleyici y[j] için 1 olan kutu sayısını en aza indirmeye çalışacaktır.

Hedefi tanımlayın

Aşağıdaki kod, sorunun nesnel işlevini tanımlar.

Python

# Objective: minimize the number of bins used.
solver.Minimize(solver.Sum([y[j] for j in data["bins"]]))

C++

// Create the objective function.
MPObjective* const objective = solver->MutableObjective();
LinearExpr num_bins_used;
for (int j = 0; j < data.num_bins; ++j) {
  num_bins_used += y[j];
}
objective->MinimizeLinearExpr(num_bins_used);

Java

MPObjective objective = solver.objective();
for (int j = 0; j < data.numBins; ++j) {
  objective.setCoefficient(y[j], 1);
}
objective.setMinimization();

C#

Objective objective = solver.Objective();
for (int j = 0; j < data.NumBins; ++j)
{
    objective.SetCoefficient(y[j], 1);
}
objective.SetMinimization();

bin j kullanılıyorsa y[j] 1 ve aksi takdirde 0 olduğu için y[j] toplamı, kullanılan bin bölmelerinin sayısıdır. Amaç, toplamı en aza indirmektir.

Çözümleyiciyi arayıp çözümü yazdırın

Aşağıdaki kod çözücüyü çağırır ve çözümü yazdırır.

Python

print(f"Solving with {solver.SolverVersion()}")
status = solver.Solve()
if status == pywraplp.Solver.OPTIMAL:
    num_bins = 0
    for j in data["bins"]:
        if y[j].solution_value() == 1:
            bin_items = []
            bin_weight = 0
            for i in data["items"]:
                if x[i, j].solution_value() > 0:
                    bin_items.append(i)
                    bin_weight += data["weights"][i]
            if bin_items:
                num_bins += 1
                print("Bin number", j)
                print("  Items packed:", bin_items)
                print("  Total weight:", bin_weight)
                print()
    print()
    print("Number of bins used:", num_bins)
    print("Time = ", solver.WallTime(), " milliseconds")
else:
    print("The problem does not have an optimal solution.")

C++

const MPSolver::ResultStatus result_status = solver->Solve();
// Check that the problem has an optimal solution.
if (result_status != MPSolver::OPTIMAL) {
  std::cerr << "The problem does not have an optimal solution!";
  return;
}
std::cout << "Number of bins used: " << objective->Value() << std::endl
          << std::endl;
double total_weight = 0;
for (int j = 0; j < data.num_bins; ++j) {
  if (y[j]->solution_value() == 1) {
    std::cout << "Bin " << j << std::endl << std::endl;
    double bin_weight = 0;
    for (int i = 0; i < data.num_items; ++i) {
      if (x[i][j]->solution_value() == 1) {
        std::cout << "Item " << i << " - Weight: " << data.weights[i]
                  << std::endl;
        bin_weight += data.weights[i];
      }
    }
    std::cout << "Packed bin weight: " << bin_weight << std::endl
              << std::endl;
    total_weight += bin_weight;
  }
}
std::cout << "Total packed weight: " << total_weight << std::endl;

Java

final MPSolver.ResultStatus resultStatus = solver.solve();
// Check that the problem has an optimal solution.
if (resultStatus == MPSolver.ResultStatus.OPTIMAL) {
  System.out.println("Number of bins used: " + objective.value());
  double totalWeight = 0;
  for (int j = 0; j < data.numBins; ++j) {
    if (y[j].solutionValue() == 1) {
      System.out.println("\nBin " + j + "\n");
      double binWeight = 0;
      for (int i = 0; i < data.numItems; ++i) {
        if (x[i][j].solutionValue() == 1) {
          System.out.println("Item " + i + " - weight: " + data.weights[i]);
          binWeight += data.weights[i];
        }
      }
      System.out.println("Packed bin weight: " + binWeight);
      totalWeight += binWeight;
    }
  }
  System.out.println("\nTotal packed weight: " + totalWeight);
} else {
  System.err.println("The problem does not have an optimal solution.");
}

C#

Solver.ResultStatus resultStatus = solver.Solve();
// Check that the problem has an optimal solution.
if (resultStatus != Solver.ResultStatus.OPTIMAL)
{
    Console.WriteLine("The problem does not have an optimal solution!");
    return;
}
Console.WriteLine($"Number of bins used: {solver.Objective().Value()}");
double TotalWeight = 0.0;
for (int j = 0; j < data.NumBins; ++j)
{
    double BinWeight = 0.0;
    if (y[j].SolutionValue() == 1)
    {
        Console.WriteLine($"Bin {j}");
        for (int i = 0; i < data.NumItems; ++i)
        {
            if (x[i, j].SolutionValue() == 1)
            {
                Console.WriteLine($"Item {i} weight: {DataModel.Weights[i]}");
                BinWeight += DataModel.Weights[i];
            }
        }
        Console.WriteLine($"Packed bin weight: {BinWeight}");
        TotalWeight += BinWeight;
    }
}
Console.WriteLine($"Total packed weight: {TotalWeight}");

Çözüm, tüm öğeleri paketlemek için gereken minimum bölme sayısını gösterir. Çözüm, kullanılan her kutu için paketlenen öğeleri ve toplam kutu ağırlığını gösterir.

Programın çıkışı

Programı çalıştırdığınızda, aşağıdaki çıktı gösterilir.

Bin number 0
  Items packed: [1, 5, 10]
  Total weight: 87

Bin number 1
  Items packed: [0, 6]
  Total weight: 90

Bin number 2
  Items packed: [2, 4, 7]
  Total weight: 97

Bin number 3
  Items packed: [3, 8, 9]
  Total weight: 96


Number of bins used: 4.0

Tamamlanan programlar

Kutu ambalajı sorunuyla ilgili tüm programlar aşağıda gösterilmiştir.

Python

from ortools.linear_solver import pywraplp


def create_data_model():
    """Create the data for the example."""
    data = {}
    weights = [48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30]
    data["weights"] = weights
    data["items"] = list(range(len(weights)))
    data["bins"] = data["items"]
    data["bin_capacity"] = 100
    return data



def main():
    data = create_data_model()

    # Create the mip solver with the SCIP backend.
    solver = pywraplp.Solver.CreateSolver("SCIP")

    if not solver:
        return

    # Variables
    # x[i, j] = 1 if item i is packed in bin j.
    x = {}
    for i in data["items"]:
        for j in data["bins"]:
            x[(i, j)] = solver.IntVar(0, 1, "x_%i_%i" % (i, j))

    # y[j] = 1 if bin j is used.
    y = {}
    for j in data["bins"]:
        y[j] = solver.IntVar(0, 1, "y[%i]" % j)

    # Constraints
    # Each item must be in exactly one bin.
    for i in data["items"]:
        solver.Add(sum(x[i, j] for j in data["bins"]) == 1)

    # The amount packed in each bin cannot exceed its capacity.
    for j in data["bins"]:
        solver.Add(
            sum(x[(i, j)] * data["weights"][i] for i in data["items"])
            <= y[j] * data["bin_capacity"]
        )

    # Objective: minimize the number of bins used.
    solver.Minimize(solver.Sum([y[j] for j in data["bins"]]))

    print(f"Solving with {solver.SolverVersion()}")
    status = solver.Solve()

    if status == pywraplp.Solver.OPTIMAL:
        num_bins = 0
        for j in data["bins"]:
            if y[j].solution_value() == 1:
                bin_items = []
                bin_weight = 0
                for i in data["items"]:
                    if x[i, j].solution_value() > 0:
                        bin_items.append(i)
                        bin_weight += data["weights"][i]
                if bin_items:
                    num_bins += 1
                    print("Bin number", j)
                    print("  Items packed:", bin_items)
                    print("  Total weight:", bin_weight)
                    print()
        print()
        print("Number of bins used:", num_bins)
        print("Time = ", solver.WallTime(), " milliseconds")
    else:
        print("The problem does not have an optimal solution.")


if __name__ == "__main__":
    main()
 

C++

#include <iostream>
#include <memory>
#include <numeric>
#include <ostream>
#include <vector>

#include "ortools/linear_solver/linear_expr.h"
#include "ortools/linear_solver/linear_solver.h"

namespace operations_research {
struct DataModel {
  const std::vector<double> weights = {48, 30, 19, 36, 36, 27,
                                       42, 42, 36, 24, 30};
  const int num_items = weights.size();
  const int num_bins = weights.size();
  const int bin_capacity = 100;
};

void BinPackingMip() {
  DataModel data;

  // Create the mip solver with the SCIP backend.
  std::unique_ptr<MPSolver> solver(MPSolver::CreateSolver("SCIP"));
  if (!solver) {
    LOG(WARNING) << "SCIP solver unavailable.";
    return;
  }

  std::vector<std::vector<const MPVariable*>> x(
      data.num_items, std::vector<const MPVariable*>(data.num_bins));
  for (int i = 0; i < data.num_items; ++i) {
    for (int j = 0; j < data.num_bins; ++j) {
      x[i][j] = solver->MakeIntVar(0.0, 1.0, "");
    }
  }
  // y[j] = 1 if bin j is used.
  std::vector<const MPVariable*> y(data.num_bins);
  for (int j = 0; j < data.num_bins; ++j) {
    y[j] = solver->MakeIntVar(0.0, 1.0, "");
  }

  // Create the constraints.
  // Each item is in exactly one bin.
  for (int i = 0; i < data.num_items; ++i) {
    LinearExpr sum;
    for (int j = 0; j < data.num_bins; ++j) {
      sum += x[i][j];
    }
    solver->MakeRowConstraint(sum == 1.0);
  }
  // For each bin that is used, the total packed weight can be at most
  // the bin capacity.
  for (int j = 0; j < data.num_bins; ++j) {
    LinearExpr weight;
    for (int i = 0; i < data.num_items; ++i) {
      weight += data.weights[i] * LinearExpr(x[i][j]);
    }
    solver->MakeRowConstraint(weight <= LinearExpr(y[j]) * data.bin_capacity);
  }

  // Create the objective function.
  MPObjective* const objective = solver->MutableObjective();
  LinearExpr num_bins_used;
  for (int j = 0; j < data.num_bins; ++j) {
    num_bins_used += y[j];
  }
  objective->MinimizeLinearExpr(num_bins_used);

  const MPSolver::ResultStatus result_status = solver->Solve();

  // Check that the problem has an optimal solution.
  if (result_status != MPSolver::OPTIMAL) {
    std::cerr << "The problem does not have an optimal solution!";
    return;
  }
  std::cout << "Number of bins used: " << objective->Value() << std::endl
            << std::endl;
  double total_weight = 0;
  for (int j = 0; j < data.num_bins; ++j) {
    if (y[j]->solution_value() == 1) {
      std::cout << "Bin " << j << std::endl << std::endl;
      double bin_weight = 0;
      for (int i = 0; i < data.num_items; ++i) {
        if (x[i][j]->solution_value() == 1) {
          std::cout << "Item " << i << " - Weight: " << data.weights[i]
                    << std::endl;
          bin_weight += data.weights[i];
        }
      }
      std::cout << "Packed bin weight: " << bin_weight << std::endl
                << std::endl;
      total_weight += bin_weight;
    }
  }
  std::cout << "Total packed weight: " << total_weight << std::endl;
}
}  // namespace operations_research

int main(int argc, char** argv) {
  operations_research::BinPackingMip();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.linearsolver.samples;
import com.google.ortools.Loader;
import com.google.ortools.linearsolver.MPConstraint;
import com.google.ortools.linearsolver.MPObjective;
import com.google.ortools.linearsolver.MPSolver;
import com.google.ortools.linearsolver.MPVariable;

/** Bin packing problem. */
public class BinPackingMip {
  static class DataModel {
    public final double[] weights = {48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30};
    public final int numItems = weights.length;
    public final int numBins = weights.length;
    public final int binCapacity = 100;
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    final DataModel data = new DataModel();

    // Create the linear solver with the SCIP backend.
    MPSolver solver = MPSolver.createSolver("SCIP");
    if (solver == null) {
      System.out.println("Could not create solver SCIP");
      return;
    }

    MPVariable[][] x = new MPVariable[data.numItems][data.numBins];
    for (int i = 0; i < data.numItems; ++i) {
      for (int j = 0; j < data.numBins; ++j) {
        x[i][j] = solver.makeIntVar(0, 1, "");
      }
    }
    MPVariable[] y = new MPVariable[data.numBins];
    for (int j = 0; j < data.numBins; ++j) {
      y[j] = solver.makeIntVar(0, 1, "");
    }

    double infinity = java.lang.Double.POSITIVE_INFINITY;
    for (int i = 0; i < data.numItems; ++i) {
      MPConstraint constraint = solver.makeConstraint(1, 1, "");
      for (int j = 0; j < data.numBins; ++j) {
        constraint.setCoefficient(x[i][j], 1);
      }
    }
    // The bin capacity contraint for bin j is
    //   sum_i w_i x_ij <= C*y_j
    // To define this constraint, first subtract the left side from the right to get
    //   0 <= C*y_j - sum_i w_i x_ij
    //
    // Note: Since sum_i w_i x_ij is positive (and y_j is 0 or 1), the right side must
    // be less than or equal to C. But it's not necessary to add this constraint
    // because it is forced by the other constraints.

    for (int j = 0; j < data.numBins; ++j) {
      MPConstraint constraint = solver.makeConstraint(0, infinity, "");
      constraint.setCoefficient(y[j], data.binCapacity);
      for (int i = 0; i < data.numItems; ++i) {
        constraint.setCoefficient(x[i][j], -data.weights[i]);
      }
    }

    MPObjective objective = solver.objective();
    for (int j = 0; j < data.numBins; ++j) {
      objective.setCoefficient(y[j], 1);
    }
    objective.setMinimization();

    final MPSolver.ResultStatus resultStatus = solver.solve();

    // Check that the problem has an optimal solution.
    if (resultStatus == MPSolver.ResultStatus.OPTIMAL) {
      System.out.println("Number of bins used: " + objective.value());
      double totalWeight = 0;
      for (int j = 0; j < data.numBins; ++j) {
        if (y[j].solutionValue() == 1) {
          System.out.println("\nBin " + j + "\n");
          double binWeight = 0;
          for (int i = 0; i < data.numItems; ++i) {
            if (x[i][j].solutionValue() == 1) {
              System.out.println("Item " + i + " - weight: " + data.weights[i]);
              binWeight += data.weights[i];
            }
          }
          System.out.println("Packed bin weight: " + binWeight);
          totalWeight += binWeight;
        }
      }
      System.out.println("\nTotal packed weight: " + totalWeight);
    } else {
      System.err.println("The problem does not have an optimal solution.");
    }
  }
  private BinPackingMip() {}
}

C#

using System;
using Google.OrTools.LinearSolver;

public class BinPackingMip
{
    class DataModel
    {
        public static double[] Weights = { 48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30 };
        public int NumItems = Weights.Length;
        public int NumBins = Weights.Length;
        public double BinCapacity = 100.0;
    }
    public static void Main()
    {
        DataModel data = new DataModel();

        // Create the linear solver with the SCIP backend.
        Solver solver = Solver.CreateSolver("SCIP");
        if (solver is null)
        {
            return;
        }

        Variable[,] x = new Variable[data.NumItems, data.NumBins];
        for (int i = 0; i < data.NumItems; i++)
        {
            for (int j = 0; j < data.NumBins; j++)
            {
                x[i, j] = solver.MakeIntVar(0, 1, $"x_{i}_{j}");
            }
        }
        Variable[] y = new Variable[data.NumBins];
        for (int j = 0; j < data.NumBins; j++)
        {
            y[j] = solver.MakeIntVar(0, 1, $"y_{j}");
        }

        for (int i = 0; i < data.NumItems; ++i)
        {
            Constraint constraint = solver.MakeConstraint(1, 1, "");
            for (int j = 0; j < data.NumBins; ++j)
            {
                constraint.SetCoefficient(x[i, j], 1);
            }
        }

        for (int j = 0; j < data.NumBins; ++j)
        {
            Constraint constraint = solver.MakeConstraint(0, Double.PositiveInfinity, "");
            constraint.SetCoefficient(y[j], data.BinCapacity);
            for (int i = 0; i < data.NumItems; ++i)
            {
                constraint.SetCoefficient(x[i, j], -DataModel.Weights[i]);
            }
        }

        Objective objective = solver.Objective();
        for (int j = 0; j < data.NumBins; ++j)
        {
            objective.SetCoefficient(y[j], 1);
        }
        objective.SetMinimization();

        Solver.ResultStatus resultStatus = solver.Solve();

        // Check that the problem has an optimal solution.
        if (resultStatus != Solver.ResultStatus.OPTIMAL)
        {
            Console.WriteLine("The problem does not have an optimal solution!");
            return;
        }
        Console.WriteLine($"Number of bins used: {solver.Objective().Value()}");
        double TotalWeight = 0.0;
        for (int j = 0; j < data.NumBins; ++j)
        {
            double BinWeight = 0.0;
            if (y[j].SolutionValue() == 1)
            {
                Console.WriteLine($"Bin {j}");
                for (int i = 0; i < data.NumItems; ++i)
                {
                    if (x[i, j].SolutionValue() == 1)
                    {
                        Console.WriteLine($"Item {i} weight: {DataModel.Weights[i]}");
                        BinWeight += DataModel.Weights[i];
                    }
                }
                Console.WriteLine($"Packed bin weight: {BinWeight}");
                TotalWeight += BinWeight;
            }
        }
        Console.WriteLine($"Total packed weight: {TotalWeight}");
    }
}