Flussi massimi

Nelle sezioni seguenti viene riportato un esempio di problema di flusso massimo (flusso massimo).

Esempio di flusso massimo

Il problema è definito dal seguente grafico, che rappresenta una rete di trasporto:

grafico dei flussi di rete

Vuoi trasportare il materiale dal nodo 0 (l'origine) al nodo 4 (il sink). I numeri accanto agli archi rappresentano le loro capacità: la capacità di un arco è la quantità massima che può essere trasportata attraverso di esso in un periodo di tempo fisso. Le capacità sono i vincoli per il problema.

Un flusso è l'assegnazione di un numero non negativo a ciascun arco (la quantità del flusso) che soddisfa la seguente regola di conservazione del flusso:

Il problema del flusso massimo è trovare un flusso per cui la somma delle quantità di flusso per l'intera rete è la più grande possibile.

Le seguenti sezioni presentano un programma per trovare il flusso massimo dall'origine (0) al sink (4).

Importa le librerie

Il seguente codice importa la libreria richiesta.

Python

import numpy as np

from ortools.graph.python import max_flow

C++

#include <cstdint>
#include <vector>

#include "ortools/graph/max_flow.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.graph.MaxFlow;

C#

using System;
using Google.OrTools.Graph;

Dichiara il risolutore

Per risolvere il problema, puoi utilizzare il risolutore SimpleMaxFlow.

Python

# Instantiate a SimpleMaxFlow solver.
smf = max_flow.SimpleMaxFlow()

C++

// Instantiate a SimpleMaxFlow solver.
SimpleMaxFlow max_flow;

Java

// Instantiate a SimpleMaxFlow solver.
MaxFlow maxFlow = new MaxFlow();

C#

// Instantiate a SimpleMaxFlow solver.
MaxFlow maxFlow = new MaxFlow();

Definire i dati

Puoi definire il grafico per il problema con tre array, ovvero i nodi iniziali, i nodi finali e le capacità degli archi. La lunghezza di ogni array equivale al numero di archi nel grafico.

Per ogni i, l'arco i va da start_nodes[i] a end_nodes[i] e la sua capacità è data da capacities[i]. La sezione successiva mostra come creare archi utilizzando questi dati.

Python

# Define three parallel arrays: start_nodes, end_nodes, and the capacities
# between each pair. For instance, the arc from node 0 to node 1 has a
# capacity of 20.
start_nodes = np.array([0, 0, 0, 1, 1, 2, 2, 3, 3])
end_nodes = np.array([1, 2, 3, 2, 4, 3, 4, 2, 4])
capacities = np.array([20, 30, 10, 40, 30, 10, 20, 5, 20])

C++

// Define three parallel arrays: start_nodes, end_nodes, and the capacities
// between each pair. For instance, the arc from node 0 to node 1 has a
// capacity of 20.
std::vector<int64_t> start_nodes = {0, 0, 0, 1, 1, 2, 2, 3, 3};
std::vector<int64_t> end_nodes = {1, 2, 3, 2, 4, 3, 4, 2, 4};
std::vector<int64_t> capacities = {20, 30, 10, 40, 30, 10, 20, 5, 20};

Java

// Define three parallel arrays: start_nodes, end_nodes, and the capacities
// between each pair. For instance, the arc from node 0 to node 1 has a
// capacity of 20.
// From Taha's 'Introduction to Operations Research',
// example 6.4-2.
int[] startNodes = new int[] {0, 0, 0, 1, 1, 2, 2, 3, 3};
int[] endNodes = new int[] {1, 2, 3, 2, 4, 3, 4, 2, 4};
int[] capacities = new int[] {20, 30, 10, 40, 30, 10, 20, 5, 20};

C#

// Define three parallel arrays: start_nodes, end_nodes, and the capacities
// between each pair. For instance, the arc from node 0 to node 1 has a
// capacity of 20.
// From Taha's 'Introduction to Operations Research',
// example 6.4-2.
int[] startNodes = { 0, 0, 0, 1, 1, 2, 2, 3, 3 };
int[] endNodes = { 1, 2, 3, 2, 4, 3, 4, 2, 4 };
int[] capacities = { 20, 30, 10, 40, 30, 10, 20, 5, 20 };

Aggiungi gli archi

Per ogni nodo iniziale e finale, crei un arco dal nodo iniziale al nodo finale con la capacità specificata, utilizzando il metodo AddArcWithCapacity. Le capacità sono i vincoli per il problema.

Python

# Add arcs in bulk.
#   note: we could have used add_arc_with_capacity(start, end, capacity)
all_arcs = smf.add_arcs_with_capacity(start_nodes, end_nodes, capacities)

C++

// Add each arc.
for (int i = 0; i < start_nodes.size(); ++i) {
  max_flow.AddArcWithCapacity(start_nodes[i], end_nodes[i], capacities[i]);
}

Java

// Add each arc.
for (int i = 0; i < startNodes.length; ++i) {
  int arc = maxFlow.addArcWithCapacity(startNodes[i], endNodes[i], capacities[i]);
  if (arc != i) {
    throw new Exception("Internal error");
  }
}

C#

// Add each arc.
for (int i = 0; i < startNodes.Length; ++i)
{
    int arc = maxFlow.AddArcWithCapacity(startNodes[i], endNodes[i], capacities[i]);
    if (arc != i)
        throw new Exception("Internal error");
}

Richiama il risolutore

Ora che tutti gli archi sono stati definiti, non ti resta che richiamare il risolutore e visualizzare i risultati. Richiami il metodo Solve(), fornendo l'origine (0) e il sink (4).

Python

# Find the maximum flow between node 0 and node 4.
status = smf.solve(0, 4)

C++

// Find the maximum flow between node 0 and node 4.
int status = max_flow.Solve(0, 4);

Java

// Find the maximum flow between node 0 and node 4.
MaxFlow.Status status = maxFlow.solve(0, 4);

C#

// Find the maximum flow between node 0 and node 4.
MaxFlow.Status status = maxFlow.Solve(0, 4);

Visualizza i risultati

Ora puoi visualizzare il flusso attraverso ogni arco.

Python

if status != smf.OPTIMAL:
    print("There was an issue with the max flow input.")
    print(f"Status: {status}")
    exit(1)
print("Max flow:", smf.optimal_flow())
print("")
print(" Arc    Flow / Capacity")
solution_flows = smf.flows(all_arcs)
for arc, flow, capacity in zip(all_arcs, solution_flows, capacities):
    print(f"{smf.tail(arc)} / {smf.head(arc)}   {flow:3}  / {capacity:3}")
print("Source side min-cut:", smf.get_source_side_min_cut())
print("Sink side min-cut:", smf.get_sink_side_min_cut())

C++

if (status == MaxFlow::OPTIMAL) {
  LOG(INFO) << "Max flow: " << max_flow.OptimalFlow();
  LOG(INFO) << "";
  LOG(INFO) << "  Arc    Flow / Capacity";
  for (std::size_t i = 0; i < max_flow.NumArcs(); ++i) {
    LOG(INFO) << max_flow.Tail(i) << " -> " << max_flow.Head(i) << "  "
              << max_flow.Flow(i) << "  / " << max_flow.Capacity(i);
  }
} else {
  LOG(INFO) << "Solving the max flow problem failed. Solver status: "
            << status;
}

Java

if (status == MaxFlow.Status.OPTIMAL) {
  System.out.println("Max. flow: " + maxFlow.getOptimalFlow());
  System.out.println();
  System.out.println("  Arc     Flow / Capacity");
  for (int i = 0; i < maxFlow.getNumArcs(); ++i) {
    System.out.println(maxFlow.getTail(i) + " -> " + maxFlow.getHead(i) + "    "
        + maxFlow.getFlow(i) + "  /  " + maxFlow.getCapacity(i));
  }
} else {
  System.out.println("Solving the max flow problem failed. Solver status: " + status);
}

C#

if (status == MaxFlow.Status.OPTIMAL)
{
    Console.WriteLine("Max. flow: " + maxFlow.OptimalFlow());
    Console.WriteLine("");
    Console.WriteLine("  Arc     Flow / Capacity");
    for (int i = 0; i < maxFlow.NumArcs(); ++i)
    {
        Console.WriteLine(maxFlow.Tail(i) + " -> " + maxFlow.Head(i) + "    " +
                          string.Format("{0,3}", maxFlow.Flow(i)) + "  /  " +
                          string.Format("{0,3}", maxFlow.Capacity(i)));
    }
}
else
{
    Console.WriteLine("Solving the max flow problem failed. Solver status: " + status);
}

Ecco l'output del programma:

Max flow: 60

  Arc    Flow / Capacity
0 -> 1    20  /  20
0 -> 2    30  /  30
0 -> 3    10  /  10
1 -> 2     0  /  40
1 -> 4    20  /  30
2 -> 3    10  /  10
2 -> 4    20  /  20
3 -> 2     0  /   5
3 -> 4    20  /  20
Source side min-cut: [0]
Sink side min-cut: [4, 1]

Le quantità di flusso attraverso ogni arco sono visualizzate sotto Flow.

Completa i programmi

Riassumendo, ecco i programmi completi.

Python

"""From Taha 'Introduction to Operations Research', example 6.4-2."""
import numpy as np

from ortools.graph.python import max_flow


def main():
    """MaxFlow simple interface example."""
    # Instantiate a SimpleMaxFlow solver.
    smf = max_flow.SimpleMaxFlow()

    # Define three parallel arrays: start_nodes, end_nodes, and the capacities
    # between each pair. For instance, the arc from node 0 to node 1 has a
    # capacity of 20.
    start_nodes = np.array([0, 0, 0, 1, 1, 2, 2, 3, 3])
    end_nodes = np.array([1, 2, 3, 2, 4, 3, 4, 2, 4])
    capacities = np.array([20, 30, 10, 40, 30, 10, 20, 5, 20])

    # Add arcs in bulk.
    #   note: we could have used add_arc_with_capacity(start, end, capacity)
    all_arcs = smf.add_arcs_with_capacity(start_nodes, end_nodes, capacities)

    # Find the maximum flow between node 0 and node 4.
    status = smf.solve(0, 4)

    if status != smf.OPTIMAL:
        print("There was an issue with the max flow input.")
        print(f"Status: {status}")
        exit(1)
    print("Max flow:", smf.optimal_flow())
    print("")
    print(" Arc    Flow / Capacity")
    solution_flows = smf.flows(all_arcs)
    for arc, flow, capacity in zip(all_arcs, solution_flows, capacities):
        print(f"{smf.tail(arc)} / {smf.head(arc)}   {flow:3}  / {capacity:3}")
    print("Source side min-cut:", smf.get_source_side_min_cut())
    print("Sink side min-cut:", smf.get_sink_side_min_cut())


if __name__ == "__main__":
    main()

C++

// From Taha 'Introduction to Operations Research', example 6.4-2."""
#include <cstdint>
#include <vector>

#include "ortools/graph/max_flow.h"

namespace operations_research {
// MaxFlow simple interface example.
void SimpleMaxFlowProgram() {
  // Instantiate a SimpleMaxFlow solver.
  SimpleMaxFlow max_flow;

  // Define three parallel arrays: start_nodes, end_nodes, and the capacities
  // between each pair. For instance, the arc from node 0 to node 1 has a
  // capacity of 20.
  std::vector<int64_t> start_nodes = {0, 0, 0, 1, 1, 2, 2, 3, 3};
  std::vector<int64_t> end_nodes = {1, 2, 3, 2, 4, 3, 4, 2, 4};
  std::vector<int64_t> capacities = {20, 30, 10, 40, 30, 10, 20, 5, 20};

  // Add each arc.
  for (int i = 0; i < start_nodes.size(); ++i) {
    max_flow.AddArcWithCapacity(start_nodes[i], end_nodes[i], capacities[i]);
  }

  // Find the maximum flow between node 0 and node 4.
  int status = max_flow.Solve(0, 4);

  if (status == MaxFlow::OPTIMAL) {
    LOG(INFO) << "Max flow: " << max_flow.OptimalFlow();
    LOG(INFO) << "";
    LOG(INFO) << "  Arc    Flow / Capacity";
    for (std::size_t i = 0; i < max_flow.NumArcs(); ++i) {
      LOG(INFO) << max_flow.Tail(i) << " -> " << max_flow.Head(i) << "  "
                << max_flow.Flow(i) << "  / " << max_flow.Capacity(i);
    }
  } else {
    LOG(INFO) << "Solving the max flow problem failed. Solver status: "
              << status;
  }
}

}  // namespace operations_research

int main() {
  operations_research::SimpleMaxFlowProgram();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.graph.samples;
import com.google.ortools.Loader;
import com.google.ortools.graph.MaxFlow;

/** Minimal MaxFlow program. */
public final class SimpleMaxFlowProgram {
  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Instantiate a SimpleMaxFlow solver.
    MaxFlow maxFlow = new MaxFlow();

    // Define three parallel arrays: start_nodes, end_nodes, and the capacities
    // between each pair. For instance, the arc from node 0 to node 1 has a
    // capacity of 20.
    // From Taha's 'Introduction to Operations Research',
    // example 6.4-2.
    int[] startNodes = new int[] {0, 0, 0, 1, 1, 2, 2, 3, 3};
    int[] endNodes = new int[] {1, 2, 3, 2, 4, 3, 4, 2, 4};
    int[] capacities = new int[] {20, 30, 10, 40, 30, 10, 20, 5, 20};

    // Add each arc.
    for (int i = 0; i < startNodes.length; ++i) {
      int arc = maxFlow.addArcWithCapacity(startNodes[i], endNodes[i], capacities[i]);
      if (arc != i) {
        throw new Exception("Internal error");
      }
    }

    // Find the maximum flow between node 0 and node 4.
    MaxFlow.Status status = maxFlow.solve(0, 4);

    if (status == MaxFlow.Status.OPTIMAL) {
      System.out.println("Max. flow: " + maxFlow.getOptimalFlow());
      System.out.println();
      System.out.println("  Arc     Flow / Capacity");
      for (int i = 0; i < maxFlow.getNumArcs(); ++i) {
        System.out.println(maxFlow.getTail(i) + " -> " + maxFlow.getHead(i) + "    "
            + maxFlow.getFlow(i) + "  /  " + maxFlow.getCapacity(i));
      }
    } else {
      System.out.println("Solving the max flow problem failed. Solver status: " + status);
    }
  }

  private SimpleMaxFlowProgram() {}
}

C#

// From Taha 'Introduction to Operations Research', example 6.4-2.
using System;
using Google.OrTools.Graph;

public class SimpleMaxFlowProgram
{
    static void Main()
    {
        // Instantiate a SimpleMaxFlow solver.
        MaxFlow maxFlow = new MaxFlow();

        // Define three parallel arrays: start_nodes, end_nodes, and the capacities
        // between each pair. For instance, the arc from node 0 to node 1 has a
        // capacity of 20.
        // From Taha's 'Introduction to Operations Research',
        // example 6.4-2.
        int[] startNodes = { 0, 0, 0, 1, 1, 2, 2, 3, 3 };
        int[] endNodes = { 1, 2, 3, 2, 4, 3, 4, 2, 4 };
        int[] capacities = { 20, 30, 10, 40, 30, 10, 20, 5, 20 };

        // Add each arc.
        for (int i = 0; i < startNodes.Length; ++i)
        {
            int arc = maxFlow.AddArcWithCapacity(startNodes[i], endNodes[i], capacities[i]);
            if (arc != i)
                throw new Exception("Internal error");
        }

        // Find the maximum flow between node 0 and node 4.
        MaxFlow.Status status = maxFlow.Solve(0, 4);

        if (status == MaxFlow.Status.OPTIMAL)
        {
            Console.WriteLine("Max. flow: " + maxFlow.OptimalFlow());
            Console.WriteLine("");
            Console.WriteLine("  Arc     Flow / Capacity");
            for (int i = 0; i < maxFlow.NumArcs(); ++i)
            {
                Console.WriteLine(maxFlow.Tail(i) + " -> " + maxFlow.Head(i) + "    " +
                                  string.Format("{0,3}", maxFlow.Flow(i)) + "  /  " +
                                  string.Format("{0,3}", maxFlow.Capacity(i)));
            }
        }
        else
        {
            Console.WriteLine("Solving the max flow problem failed. Solver status: " + status);
        }
    }
}