CP-SAT Çözücü

VEYA Araçları, tamsayılı programlama problemlerini çözmek için iki temel araç sunar:

  • MPSolver.
  • CP-SAT çözücüsü, birazdan açıklayacağız.

Hem CP-SAT çözücü hem de MPSolver sarmalayıcıyı kullanarak bir tam sayı programlama problemini çözen bir örnek için Ödev Sorularını Çözme bölümüne bakın.

Aşağıdaki bölümlerde, CP-SAT çözücünün nasıl kullanılacağıyla ilgili örnekler verilmektedir.

Örnek: uygun bir çözüm bulma

Aşağıdakilerin yer aldığı basit bir örnek problemle başlayalım:

  • Her biri değerleri alabilir: x, y ve z olmak üzere üç değişken: 0, 1 veya 2.
  • Bir kısıtlama: x != y

İlk olarak, desteklenen tüm dillerde tek bir uygun çözüm bulmak için CP-SAT çözücünün nasıl kullanılacağını göstereceğiz. Bu durumda uygulanabilir bir çözüm bulmak kolay olmasa da daha karmaşık kısıt programlama problemlerinde uygun bir çözüm olup olmadığını belirlemek çok zor olabilir.

SBM problemine en uygun çözümü bulma örneği için Optimizasyon Sorunu Çözme bölümüne bakın.

Kitaplıkları içe aktarın

Aşağıdaki kod gerekli kitaplığı içe aktarır.

Python

from ortools.sat.python import cp_model

C++

#include <stdlib.h>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/util/sorted_interval_list.h"

Java

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;

C#

using System;
using Google.OrTools.Sat;

Modeli bildirin

Aşağıdaki kod CP-SAT modelini tanımlar.

Python

model = cp_model.CpModel()

C++

CpModelBuilder cp_model;

Java

CpModel model = new CpModel();

C#

CpModel model = new CpModel();

Değişkenleri oluşturma

Aşağıdaki kod, sorun için değişkenler oluşturur.

Python

num_vals = 3
x = model.new_int_var(0, num_vals - 1, "x")
y = model.new_int_var(0, num_vals - 1, "y")
z = model.new_int_var(0, num_vals - 1, "z")

C++

const Domain domain(0, 2);
const IntVar x = cp_model.NewIntVar(domain).WithName("x");
const IntVar y = cp_model.NewIntVar(domain).WithName("y");
const IntVar z = cp_model.NewIntVar(domain).WithName("z");

Java

int numVals = 3;

IntVar x = model.newIntVar(0, numVals - 1, "x");
IntVar y = model.newIntVar(0, numVals - 1, "y");
IntVar z = model.newIntVar(0, numVals - 1, "z");

C#

int num_vals = 3;

IntVar x = model.NewIntVar(0, num_vals - 1, "x");
IntVar y = model.NewIntVar(0, num_vals - 1, "y");
IntVar z = model.NewIntVar(0, num_vals - 1, "z");

Çözme aracı x, y ve z olmak üzere üç değişken oluşturur. Bu değişkenlerin her biri 0, 1 veya 2 değerlerini alabilir.

Sınırlama oluşturma

Aşağıdaki kod x != y kısıtlamasını oluşturur.

Python

model.add(x != y)

C++

cp_model.AddNotEqual(x, y);

Java

model.addDifferent(x, y);

C#

model.Add(x != y);

Çözücüyü arayın

Aşağıdaki kod çözücüyü çağırır.

Python

solver = cp_model.CpSolver()
status = solver.solve(model)

C++

const CpSolverResponse response = Solve(cp_model.Build());

Java

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.solve(model);

C#

CpSolver solver = new CpSolver();
CpSolverStatus status = solver.Solve(model);

CP-SAT döndürme değerleri

CP-SAT çözücü, aşağıdaki tabloda gösterilen durum değerlerinden birini döndürür. Bu örnekte döndürülen değer OPTIMAL.

Durum Açıklama
OPTIMAL Uygun en uygun çözüm bulundu.
FEASIBLE Makul bir çözüm bulundu ama en uygun olup olmadığını bilmiyoruz.
INFEASIBLE Sorunun uygulanabilir olmadığı kanıtlandı.
MODEL_INVALID Belirtilen CpModelProto, doğrulama adımını geçemedi. ValidateCpModel(model_proto) yöntemini çağırarak ayrıntılı hata alabilirsiniz.
UNKNOWN Çözücünün zaman sınırı, bellek sınırı veya kullanıcı tarafından ayarlanan özel sınır gibi bir durum durmasına yol açmadan önce çözüm bulunamadığı (veya sorunun ETKİNLEŞTİRİLMEDİĞİ) için modelin durumu bilinmiyor.

Bunlar cp_model.proto içinde tanımlanır.

İlk çözümü göster

Aşağıdaki kod, çözücü tarafından bulunan ilk uygulanabilir çözümü gösterir. Kodun, status değerinin FEASIBLE veya OPTIMAL olup olmadığını kontrol ettiğini unutmayın.

Python

if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
    print(f"x = {solver.value(x)}")
    print(f"y = {solver.value(y)}")
    print(f"z = {solver.value(z)}")
else:
    print("No solution found.")

C++

if (response.status() == CpSolverStatus::OPTIMAL ||
    response.status() == CpSolverStatus::FEASIBLE) {
  // Get the value of x in the solution.
  LOG(INFO) << "x = " << SolutionIntegerValue(response, x);
  LOG(INFO) << "y = " << SolutionIntegerValue(response, y);
  LOG(INFO) << "z = " << SolutionIntegerValue(response, z);
} else {
  LOG(INFO) << "No solution found.";
}

Java

if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
  System.out.println("x = " + solver.value(x));
  System.out.println("y = " + solver.value(y));
  System.out.println("z = " + solver.value(z));
} else {
  System.out.println("No solution found.");
}

C#

if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
{
    Console.WriteLine("x = " + solver.Value(x));
    Console.WriteLine("y = " + solver.Value(y));
    Console.WriteLine("z = " + solver.Value(z));
}
else
{
    Console.WriteLine("No solution found.");
}

Programı çalıştırma

Programların tamamı sonraki bölümde gösterilir. Bir programı çalıştırdığınızda, çözücü tarafından bulunan ilk çözümü döndürür:

x = 1
y = 0
z = 0

Programları tamamlayın

Programların tamamı aşağıda gösterilmektedir.

Python

"""Simple solve."""
from ortools.sat.python import cp_model


def simple_sat_program():
    """Minimal CP-SAT example to showcase calling the solver."""
    # Creates the model.
    model = cp_model.CpModel()

    # Creates the variables.
    num_vals = 3
    x = model.new_int_var(0, num_vals - 1, "x")
    y = model.new_int_var(0, num_vals - 1, "y")
    z = model.new_int_var(0, num_vals - 1, "z")

    # Creates the constraints.
    model.add(x != y)

    # Creates a solver and solves the model.
    solver = cp_model.CpSolver()
    status = solver.solve(model)

    if status == cp_model.OPTIMAL or status == cp_model.FEASIBLE:
        print(f"x = {solver.value(x)}")
        print(f"y = {solver.value(y)}")
        print(f"z = {solver.value(z)}")
    else:
        print("No solution found.")


simple_sat_program()

C++

#include <stdlib.h>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/util/sorted_interval_list.h"

namespace operations_research {
namespace sat {

void SimpleSatProgram() {
  CpModelBuilder cp_model;

  const Domain domain(0, 2);
  const IntVar x = cp_model.NewIntVar(domain).WithName("x");
  const IntVar y = cp_model.NewIntVar(domain).WithName("y");
  const IntVar z = cp_model.NewIntVar(domain).WithName("z");

  cp_model.AddNotEqual(x, y);

  // Solving part.
  const CpSolverResponse response = Solve(cp_model.Build());

  if (response.status() == CpSolverStatus::OPTIMAL ||
      response.status() == CpSolverStatus::FEASIBLE) {
    // Get the value of x in the solution.
    LOG(INFO) << "x = " << SolutionIntegerValue(response, x);
    LOG(INFO) << "y = " << SolutionIntegerValue(response, y);
    LOG(INFO) << "z = " << SolutionIntegerValue(response, z);
  } else {
    LOG(INFO) << "No solution found.";
  }
}

}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::SimpleSatProgram();
  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;
import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverStatus;
import com.google.ortools.sat.IntVar;

/** Minimal CP-SAT example to showcase calling the solver. */
public final class SimpleSatProgram {
  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Create the model.
    CpModel model = new CpModel();

    // Create the variables.
    int numVals = 3;

    IntVar x = model.newIntVar(0, numVals - 1, "x");
    IntVar y = model.newIntVar(0, numVals - 1, "y");
    IntVar z = model.newIntVar(0, numVals - 1, "z");

    // Create the constraints.
    model.addDifferent(x, y);

    // Create a solver and solve the model.
    CpSolver solver = new CpSolver();
    CpSolverStatus status = solver.solve(model);

    if (status == CpSolverStatus.OPTIMAL || status == CpSolverStatus.FEASIBLE) {
      System.out.println("x = " + solver.value(x));
      System.out.println("y = " + solver.value(y));
      System.out.println("z = " + solver.value(z));
    } else {
      System.out.println("No solution found.");
    }
  }

  private SimpleSatProgram() {}
}

C#

using System;
using Google.OrTools.Sat;

public class SimpleSatProgram
{
    static void Main()
    {
        // Creates the model.
        CpModel model = new CpModel();

        // Creates the variables.
        int num_vals = 3;

        IntVar x = model.NewIntVar(0, num_vals - 1, "x");
        IntVar y = model.NewIntVar(0, num_vals - 1, "y");
        IntVar z = model.NewIntVar(0, num_vals - 1, "z");

        // Creates the constraints.
        model.Add(x != y);

        // Creates a solver and solves the model.
        CpSolver solver = new CpSolver();
        CpSolverStatus status = solver.Solve(model);

        if (status == CpSolverStatus.Optimal || status == CpSolverStatus.Feasible)
        {
            Console.WriteLine("x = " + solver.Value(x));
            Console.WriteLine("y = " + solver.Value(y));
            Console.WriteLine("z = " + solver.Value(z));
        }
        else
        {
            Console.WriteLine("No solution found.");
        }
    }
}

Tüm çözümler bulunuyor

Ardından, uygun tüm çözümleri bulmak için yukarıdaki programı nasıl değiştireceğinizi göstereceğiz.

Programa eklenen en önemli parça, çözücüye ilettiğiniz ve bulunan her çözümü gösteren bir çözüm yazıcısıdır.

Çözüm yazıcısını ekleyin

Aşağıdaki kod çözüm yazıcısını oluşturur.

Python

class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
    """Print intermediate solutions."""

    def __init__(self, variables: list[cp_model.IntVar]):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.__variables = variables
        self.__solution_count = 0

    def on_solution_callback(self) -> None:
        self.__solution_count += 1
        for v in self.__variables:
            print(f"{v}={self.value(v)}", end=" ")
        print()

    @property
    def solution_count(self) -> int:
        return self.__solution_count

C++

Model model;

int num_solutions = 0;
model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) {
  LOG(INFO) << "Solution " << num_solutions;
  LOG(INFO) << "  x = " << SolutionIntegerValue(r, x);
  LOG(INFO) << "  y = " << SolutionIntegerValue(r, y);
  LOG(INFO) << "  z = " << SolutionIntegerValue(r, z);
  num_solutions++;
}));

Java

static class VarArraySolutionPrinter extends CpSolverSolutionCallback {
  public VarArraySolutionPrinter(IntVar[] variables) {
    variableArray = variables;
  }

  @Override
  public void onSolutionCallback() {
    System.out.printf("Solution #%d: time = %.02f s%n", solutionCount, wallTime());
    for (IntVar v : variableArray) {
      System.out.printf("  %s = %d%n", v.getName(), value(v));
    }
    solutionCount++;
  }

  public int getSolutionCount() {
    return solutionCount;
  }

  private int solutionCount;
  private final IntVar[] variableArray;
}

C#

public class VarArraySolutionPrinter : CpSolverSolutionCallback
{
    public VarArraySolutionPrinter(IntVar[] variables)
    {
        variables_ = variables;
    }

    public override void OnSolutionCallback()
    {
        {
            Console.WriteLine(String.Format("Solution #{0}: time = {1:F2} s", solution_count_, WallTime()));
            foreach (IntVar v in variables_)
            {
                Console.WriteLine(String.Format("  {0} = {1}", v.ToString(), Value(v)));
            }
            solution_count_++;
        }
    }

    public int SolutionCount()
    {
        return solution_count_;
    }

    private int solution_count_;
    private IntVar[] variables_;
}

Çözücüyü arayın

Aşağıdaki kod çözücüyü çağırır ve çözüm yazıcısını buna iletir.

Python

solver = cp_model.CpSolver()
solution_printer = VarArraySolutionPrinter([x, y, z])
# Enumerate all solutions.
solver.parameters.enumerate_all_solutions = True
# Solve.
status = solver.solve(model, solution_printer)

C++

SatParameters parameters;
parameters.set_enumerate_all_solutions(true);
model.Add(NewSatParameters(parameters));
const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);

Java

CpSolver solver = new CpSolver();
VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] {x, y, z});
// Tell the solver to enumerate all solutions.
solver.getParameters().setEnumerateAllSolutions(true);
// And solve.
solver.solve(model, cb);

C#

CpSolver solver = new CpSolver();
VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] { x, y, z });
// Search for all solutions.
solver.StringParameters = "enumerate_all_solutions:true";
// And solve.
solver.Solve(model, cb);

Programı çalıştırma

Programın tamamı sonraki bölümde gösterilmektedir. Programı çalıştırdığınızda, 18 uygun çözümün tümü görüntülenir:

x=1 y=0 z=0
x=2 y=0 z=0
x=2 y=1 z=0
x=2 y=1 z=1
x=2 y=1 z=2
x=2 y=0 z=2
x=2 y=0 z=1
x=1 y=0 z=1
x=0 y=1 z=1
x=0 y=1 z=2
x=0 y=2 z=2
x=1 y=2 z=2
x=1 y=2 z=1
x=1 y=2 z=0
x=0 y=2 z=0
x=0 y=1 z=0
x=0 y=2 z=1
x=1 y=0 z=2
Status = FEASIBLE

Programları tamamlayın

Programların tamamı aşağıda gösterilmektedir.

Python

from ortools.sat.python import cp_model


class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
    """Print intermediate solutions."""

    def __init__(self, variables: list[cp_model.IntVar]):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.__variables = variables
        self.__solution_count = 0

    def on_solution_callback(self) -> None:
        self.__solution_count += 1
        for v in self.__variables:
            print(f"{v}={self.value(v)}", end=" ")
        print()

    @property
    def solution_count(self) -> int:
        return self.__solution_count


def search_for_all_solutions_sample_sat():
    """Showcases calling the solver to search for all solutions."""
    # Creates the model.
    model = cp_model.CpModel()

    # Creates the variables.
    num_vals = 3
    x = model.new_int_var(0, num_vals - 1, "x")
    y = model.new_int_var(0, num_vals - 1, "y")
    z = model.new_int_var(0, num_vals - 1, "z")

    # Create the constraints.
    model.add(x != y)

    # Create a solver and solve.
    solver = cp_model.CpSolver()
    solution_printer = VarArraySolutionPrinter([x, y, z])
    # Enumerate all solutions.
    solver.parameters.enumerate_all_solutions = True
    # Solve.
    status = solver.solve(model, solution_printer)

    print(f"Status = {solver.status_name(status)}")
    print(f"Number of solutions found: {solution_printer.solution_count}")


search_for_all_solutions_sample_sat()

C++

#include <stdlib.h>

#include "ortools/base/logging.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/cp_model.pb.h"
#include "ortools/sat/cp_model_solver.h"
#include "ortools/sat/model.h"
#include "ortools/sat/sat_parameters.pb.h"
#include "ortools/util/sorted_interval_list.h"

namespace operations_research {
namespace sat {

void SearchAllSolutionsSampleSat() {
  CpModelBuilder cp_model;

  const Domain domain(0, 2);
  const IntVar x = cp_model.NewIntVar(domain).WithName("x");
  const IntVar y = cp_model.NewIntVar(domain).WithName("y");
  const IntVar z = cp_model.NewIntVar(domain).WithName("z");

  cp_model.AddNotEqual(x, y);

  Model model;

  int num_solutions = 0;
  model.Add(NewFeasibleSolutionObserver([&](const CpSolverResponse& r) {
    LOG(INFO) << "Solution " << num_solutions;
    LOG(INFO) << "  x = " << SolutionIntegerValue(r, x);
    LOG(INFO) << "  y = " << SolutionIntegerValue(r, y);
    LOG(INFO) << "  z = " << SolutionIntegerValue(r, z);
    num_solutions++;
  }));

  // Tell the solver to enumerate all solutions.
  SatParameters parameters;
  parameters.set_enumerate_all_solutions(true);
  model.Add(NewSatParameters(parameters));
  const CpSolverResponse response = SolveCpModel(cp_model.Build(), &model);

  LOG(INFO) << "Number of solutions found: " << num_solutions;
}

}  // namespace sat
}  // namespace operations_research

int main() {
  operations_research::sat::SearchAllSolutionsSampleSat();

  return EXIT_SUCCESS;
}

Java

package com.google.ortools.sat.samples;

import com.google.ortools.Loader;
import com.google.ortools.sat.CpModel;
import com.google.ortools.sat.CpSolver;
import com.google.ortools.sat.CpSolverSolutionCallback;
import com.google.ortools.sat.IntVar;

/** Code sample that solves a model and displays all solutions. */
public class SearchForAllSolutionsSampleSat {
  static class VarArraySolutionPrinter extends CpSolverSolutionCallback {
    public VarArraySolutionPrinter(IntVar[] variables) {
      variableArray = variables;
    }

    @Override
    public void onSolutionCallback() {
      System.out.printf("Solution #%d: time = %.02f s%n", solutionCount, wallTime());
      for (IntVar v : variableArray) {
        System.out.printf("  %s = %d%n", v.getName(), value(v));
      }
      solutionCount++;
    }

    public int getSolutionCount() {
      return solutionCount;
    }

    private int solutionCount;
    private final IntVar[] variableArray;
  }

  public static void main(String[] args) throws Exception {
    Loader.loadNativeLibraries();
    // Create the model.
    CpModel model = new CpModel();

    // Create the variables.
    int numVals = 3;

    IntVar x = model.newIntVar(0, numVals - 1, "x");
    IntVar y = model.newIntVar(0, numVals - 1, "y");
    IntVar z = model.newIntVar(0, numVals - 1, "z");

    // Create the constraints.
    model.addDifferent(x, y);

    // Create a solver and solve the model.
    CpSolver solver = new CpSolver();
    VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] {x, y, z});
    // Tell the solver to enumerate all solutions.
    solver.getParameters().setEnumerateAllSolutions(true);
    // And solve.
    solver.solve(model, cb);

    System.out.println(cb.getSolutionCount() + " solutions found.");
  }
}

C#

using System;
using Google.OrTools.Sat;

public class VarArraySolutionPrinter : CpSolverSolutionCallback
{
    public VarArraySolutionPrinter(IntVar[] variables)
    {
        variables_ = variables;
    }

    public override void OnSolutionCallback()
    {
        {
            Console.WriteLine(String.Format("Solution #{0}: time = {1:F2} s", solution_count_, WallTime()));
            foreach (IntVar v in variables_)
            {
                Console.WriteLine(String.Format("  {0} = {1}", v.ToString(), Value(v)));
            }
            solution_count_++;
        }
    }

    public int SolutionCount()
    {
        return solution_count_;
    }

    private int solution_count_;
    private IntVar[] variables_;
}

public class SearchForAllSolutionsSampleSat
{
    static void Main()
    {
        // Creates the model.
        CpModel model = new CpModel();

        // Creates the variables.
        int num_vals = 3;

        IntVar x = model.NewIntVar(0, num_vals - 1, "x");
        IntVar y = model.NewIntVar(0, num_vals - 1, "y");
        IntVar z = model.NewIntVar(0, num_vals - 1, "z");

        // Adds a different constraint.
        model.Add(x != y);

        // Creates a solver and solves the model.
        CpSolver solver = new CpSolver();
        VarArraySolutionPrinter cb = new VarArraySolutionPrinter(new IntVar[] { x, y, z });
        // Search for all solutions.
        solver.StringParameters = "enumerate_all_solutions:true";
        // And solve.
        solver.Solve(model, cb);

        Console.WriteLine($"Number of solutions found: {cb.SolutionCount()}");
    }
}