Bạn có thể dùng Bộ công cụ học máy để nhận dạng văn bản trong hình ảnh hoặc video, chẳng hạn như văn bản của một biển báo trên đường. Các đặc điểm chính của tính năng này là:
Tính năng | Không nhóm | Theo cụm |
---|---|---|
Tên thư viện | com.google.android.gms:play-services-mlkit-text-recognition
com.google.android.gms:play-services-mlkit-text-recognition-chinese com.google.android.gms:play-services-mlkit-text-recognition-devanagari com.google.android.gms:play-services-mlkit-text-recognition-japanese com.google.android.gms:play-services-mlkit-text-recognition-korean |
com.google.mlkit:text-recognition
com.google.mlkit:text-recognition-chinese com.google.mlkit:text-recognition-devanagari com.google.mlkit:text-recognition-japanese com.google.mlkit:text-recognition-korean |
Triển khai | Mô hình được tải xuống một cách linh động thông qua Dịch vụ Google Play. | Mô hình được liên kết tĩnh với ứng dụng của bạn tại thời điểm xây dựng. |
Kích thước ứng dụng | Tăng kích thước khoảng 260 KB cho mỗi cấu trúc tập lệnh. | Tăng kích thước khoảng 4 MB cho mỗi tập lệnh trên mỗi cấu trúc. |
Thời gian khởi chạy | Có thể phải đợi mô hình tải xuống trước khi sử dụng lần đầu. | Mô hình có sẵn ngay lập tức. |
Hiệu suất | Thời gian thực trên hầu hết thiết bị đối với thư viện tập lệnh Latinh, chậm hơn đối với các thiết bị khác. | Thời gian thực trên hầu hết thiết bị đối với thư viện tập lệnh Latinh, chậm hơn đối với các thiết bị khác. |
Dùng thử
- Dùng thử ứng dụng mẫu để xem ví dụ về cách sử dụng API này.
- Hãy tự mình thử mã bằng lớp học lập trình.
Trước khi bắt đầu
- Trong tệp
build.gradle
ở cấp dự án, hãy nhớ đưa kho lưu trữ Maven của Google vào cả hai phầnbuildscript
vàallprojects
. Thêm các phần phụ thuộc cho thư viện Android Bộ công cụ học máy vào tệp gradle cấp ứng dụng của mô-đun, thường là
app/build.gradle
:Để nhóm mô hình với ứng dụng của bạn:
dependencies { // To recognize Latin script implementation 'com.google.mlkit:text-recognition:16.0.1' // To recognize Chinese script implementation 'com.google.mlkit:text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.mlkit:text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.mlkit:text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.mlkit:text-recognition-korean:16.0.1' }
Cách sử dụng mô hình này trong Dịch vụ Google Play:
dependencies { // To recognize Latin script implementation 'com.google.android.gms:play-services-mlkit-text-recognition:19.0.1' // To recognize Chinese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-chinese:16.0.1' // To recognize Devanagari script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-devanagari:16.0.1' // To recognize Japanese script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-japanese:16.0.1' // To recognize Korean script implementation 'com.google.android.gms:play-services-mlkit-text-recognition-korean:16.0.1' }
Nếu chọn sử dụng mô hình này trong Dịch vụ Google Play, bạn có thể định cấu hình ứng dụng của bạn để tự động tải mô hình xuống thiết bị sau khi ứng dụng của bạn được cài đặt qua Cửa hàng Play. Để thực hiện điều này, hãy thêm nội dung sau phần khai báo cho tệp
AndroidManifest.xml
của ứng dụng:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="ocr" > <!-- To use multiple models: android:value="ocr,ocr_chinese,ocr_devanagari,ocr_japanese,ocr_korean,..." --> </application>
Bạn cũng có thể kiểm tra rõ ràng phạm vi cung cấp của mô hình và yêu cầu tải xuống thông qua ModuleInstallClient API của Dịch vụ Google Play. Nếu bạn không bật mô hình thời gian cài đặt tải xuống hoặc yêu cầu tải xuống rõ ràng, mô hình sẽ được tải xuống khi bạn chạy trình quét. Yêu cầu bạn đưa ra trước khi tải xuống hoàn tất không có kết quả nào.
1. Tạo một thực thể của TextRecognizer
Tạo một thực thể của TextRecognizer
, truyền các tuỳ chọn
liên quan đến thư viện mà bạn đã khai báo phần phụ thuộc ở trên:
Kotlin
// When using Latin script library val recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS) // When using Chinese script library val recognizer = TextRecognition.getClient(ChineseTextRecognizerOptions.Builder().build()) // When using Devanagari script library val recognizer = TextRecognition.getClient(DevanagariTextRecognizerOptions.Builder().build()) // When using Japanese script library val recognizer = TextRecognition.getClient(JapaneseTextRecognizerOptions.Builder().build()) // When using Korean script library val recognizer = TextRecognition.getClient(KoreanTextRecognizerOptions.Builder().build())
Java
// When using Latin script library TextRecognizer recognizer = TextRecognition.getClient(TextRecognizerOptions.DEFAULT_OPTIONS); // When using Chinese script library TextRecognizer recognizer = TextRecognition.getClient(new ChineseTextRecognizerOptions.Builder().build()); // When using Devanagari script library TextRecognizer recognizer = TextRecognition.getClient(new DevanagariTextRecognizerOptions.Builder().build()); // When using Japanese script library TextRecognizer recognizer = TextRecognition.getClient(new JapaneseTextRecognizerOptions.Builder().build()); // When using Korean script library TextRecognizer recognizer = TextRecognition.getClient(new KoreanTextRecognizerOptions.Builder().build());
2. Chuẩn bị hình ảnh đầu vào
Để nhận dạng văn bản trong hình ảnh, hãy tạo một đối tượng InputImage
từ
Bitmap
, media.Image
, ByteBuffer
, mảng byte hoặc một tệp trên
thiết bị. Sau đó, hãy truyền đối tượng InputImage
vào phương thức
Phương thức processImage
của TextRecognizer
.
Bạn có thể tạo một InputImage
đối tượng từ các nguồn khác nhau, mỗi nguồn được giải thích ở bên dưới.
Sử dụng media.Image
Cách tạo InputImage
từ đối tượng media.Image
, chẳng hạn như khi bạn chụp ảnh từ một
camera của thiết bị, hãy truyền đối tượng media.Image
và
xoay thành InputImage.fromMediaImage()
.
Nếu bạn sử dụng
Thư viện CameraX, OnImageCapturedListener
và
Các lớp ImageAnalysis.Analyzer
tính toán giá trị xoay
cho bạn.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Nếu không sử dụng thư viện máy ảnh cung cấp độ xoay của hình ảnh, bạn có thể tính tỷ lệ khung hình dựa trên độ xoay của thiết bị và hướng của máy ảnh cảm biến trong thiết bị:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Sau đó, hãy truyền đối tượng media.Image
và
giá trị độ xoay thành InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Sử dụng URI tệp
Cách tạo InputImage
từ một URI tệp, hãy chuyển ngữ cảnh ứng dụng và URI tệp đến
InputImage.fromFilePath()
. Điều này rất hữu ích khi bạn
sử dụng ý định ACTION_GET_CONTENT
để nhắc người dùng chọn
một bức ảnh trong ứng dụng thư viện của họ.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Sử dụng ByteBuffer
hoặc ByteArray
Cách tạo InputImage
đối tượng từ ByteBuffer
hoặc ByteArray
, trước tiên hãy tính hình ảnh
độ xoay như mô tả trước đây cho đầu vào media.Image
.
Sau đó, hãy tạo đối tượng InputImage
bằng vùng đệm hoặc mảng, cùng với đối tượng
chiều cao, chiều rộng, định dạng mã hoá màu và độ xoay:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Sử dụng Bitmap
Cách tạo InputImage
qua đối tượng Bitmap
, hãy khai báo sau:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Hình ảnh được biểu thị bằng một đối tượng Bitmap
cùng với độ xoay.
3. Xử lý hình ảnh
Truyền hình ảnh vào phương thức process
:
Kotlin
val result = recognizer.process(image) .addOnSuccessListener { visionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<Text> result = recognizer.process(image) .addOnSuccessListener(new OnSuccessListener<Text>() { @Override public void onSuccess(Text visionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Trích xuất văn bản từ các khối văn bản được nhận dạng
Nếu thao tác nhận dạng văn bản thành công, đối tượng Text
sẽ được truyền đến
trình nghe thành công. Đối tượng Text
chứa văn bản đầy đủ được nhận dạng trong
hình ảnh đó và không hoặc có nhiều đối tượng TextBlock
.
Mỗi TextBlock
đại diện cho một khối văn bản hình chữ nhật,
chứa không hoặc chứa nhiều đối tượng Line
. Một
Đối tượng Line
đại diện cho một dòng văn bản chứa số không
hoặc nhiều đối tượng Element
khác. Mỗi Element
đối tượng đại diện cho một từ hoặc một đối tượng giống từ, chứa số không hoặc nhiều hơn
Symbol
. Mỗi Symbol
đối tượng đại diện cho một ký tự, một chữ số hoặc một thực thể giống từ.
Đối với mỗi TextBlock
, Line
,
Element
và Symbol
đối tượng, bạn
có thể nhận dạng được văn bản trong khu vực, toạ độ giới hạn của
khu vực và nhiều thuộc tính khác như thông tin xoay vòng, điểm số tin cậy
và hơn thế nữa
Ví dụ:
Kotlin
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Java
String resultText = result.getText(); for (Text.TextBlock block : result.getTextBlocks()) { String blockText = block.getText(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (Text.Line line : block.getLines()) { String lineText = line.getText(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (Text.Element element : line.getElements()) { String elementText = element.getText(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); for (Text.Symbol symbol : element.getSymbols()) { String symbolText = symbol.getText(); Point[] symbolCornerPoints = symbol.getCornerPoints(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
Nguyên tắc nhập hình ảnh
-
Để Bộ công cụ học máy nhận dạng chính xác văn bản, hình ảnh đầu vào phải chứa được biểu thị bằng đủ dữ liệu pixel. Tốt nhất là bạn nên mỗi ký tự phải có kích thước tối thiểu là 16x16 pixel. Thường không có tính chính xác cho các ký tự lớn hơn 24x24 pixel.
Vì vậy, ví dụ: hình ảnh 640x480 có thể phù hợp để quét danh thiếp chiếm toàn bộ chiều rộng của hình ảnh. Để quét tài liệu được in trên giấy có kích thước chữ cái, có thể yêu cầu hình ảnh 720x1280 pixel.
-
Tiêu điểm hình ảnh kém có thể ảnh hưởng đến độ chính xác của nhận dạng văn bản. Nếu bạn không để nhận được kết quả có thể chấp nhận được, hãy thử yêu cầu người dùng chụp lại hình ảnh.
-
Nếu đang nhận dạng được văn bản trong ứng dụng theo thời gian thực, hãy xem xét kích thước tổng thể của các hình ảnh đầu vào. Nhỏ hơn có thể được xử lý nhanh hơn. Để giảm độ trễ, hãy đảm bảo rằng văn bản chiếm nhiều ảnh càng tốt và chụp ảnh ở độ phân giải thấp hơn (lưu ý đến độ chính xác nêu trên). Để biết thêm thông tin, hãy xem Mẹo cải thiện hiệu suất.
Mẹo cải thiện hiệu suất
- Nếu bạn sử dụng
Camera
hoặc APIcamera2
, lệnh điều tiết đến trình phát hiện. Nếu một video mới khung hình sẽ xuất hiện trong khi trình phát hiện đang chạy, hãy bỏ khung đó. Xem Ví dụ về lớpVisionProcessorBase
trong ứng dụng mẫu khởi động nhanh. - Nếu bạn sử dụng API
CameraX
, đảm bảo rằng chiến lược backpressure được đặt ở giá trị mặc địnhImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. Việc này giúp đảm bảo mỗi lần hệ thống chỉ gửi một hình ảnh để phân tích. Nếu các hình ảnh khác được tạo khi trình phân tích bận, chúng sẽ tự động bị loại bỏ và không được đưa vào hàng đợi của bạn. Sau khi hình ảnh đang được phân tích được đóng bằng cách gọi ImageProxy.close(), hình ảnh mới nhất tiếp theo sẽ được gửi. - Nếu bạn sử dụng đầu ra của trình phát hiện để phủ đồ hoạ lên
hình ảnh đầu vào, trước tiên hãy lấy kết quả từ Bộ công cụ học máy, sau đó kết xuất hình ảnh
và phủ lên trên
trong một bước duy nhất. Kết xuất này hiển thị trên bề mặt màn hình
một lần cho mỗi khung đầu vào. Xem
CameraSourcePreview
và Ví dụ về các lớpGraphicOverlay
trong ứng dụng mẫu khởi động nhanh. - Nếu bạn sử dụng API Camera2, hãy chụp ảnh trong
Định dạng
ImageFormat.YUV_420_888
. Nếu bạn sử dụng API Máy ảnh cũ, hãy chụp ảnh trong Định dạngImageFormat.NV21
. - Hãy cân nhắc chụp ảnh ở độ phân giải thấp hơn. Tuy nhiên, hãy lưu ý rằng các yêu cầu về kích thước hình ảnh của API này.