ML Kit udostępnia zoptymalizowane SDK do segmentacji selfie.
Komponenty Selfie Segmenter są statycznie połączone z aplikacją w momencie kompilacji. Spowoduje to zwiększenie rozmiaru pliku do pobrania aplikacji o około 4,5 MB, a opóźnienie wywołania interfejsu API może wynosić od 25 do 65 ms w zależności od rozmiaru obrazu wejściowego (zmierzonego na urządzeniu Pixel 4).
Wypróbuj
- Aby zobaczyć przykład użycia tego interfejsu API, wypróbuj przykładową aplikację.
Zanim zaczniesz
- W pliku
build.gradle
na poziomie projektu dodaj repozytorium Maven firmy Google w sekcjachbuildscript
iallprojects
. - Dodaj zależności do bibliotek ML Kit na Androida do pliku Gradle modułu na poziomie aplikacji. Jest to zwykle
app/build.gradle
:
dependencies {
implementation 'com.google.mlkit:segmentation-selfie:16.0.0-beta6'
}
1. Tworzenie instancji Segmenter
Opcje segmentacji
Aby przeprowadzić podział na segmenty obrazu, najpierw utwórz instancję funkcji Segmenter
, podając te opcje.
Tryb detekcji
Usługa Segmenter
działa w 2 trybach. Pamiętaj, aby wybrać model, który pasuje do Twojego przypadku użycia.
STREAM_MODE (default)
Ten tryb jest przeznaczony do przesyłania strumieniowego klatek z filmu lub kamery. W tym trybie segmentator wykorzysta wyniki z poprzednich klatek, aby uzyskać płynniejsze wyniki podziału na segmenty.
SINGLE_IMAGE_MODE
Ten tryb jest przeznaczony do pojedynczych obrazów, które nie są ze sobą powiązane. W tym trybie segmentator przetworzy każdy obraz niezależnie, bez wygładzania klatek.
Włącz maskę rozmiaru w formacie RAW
Prosi segmenter o zwrócenie maski rozmiaru nieprzetworzonego, która odpowiada rozmiarowi wyjściowemu modelu.
Rozmiar surowej maski (np. 256 x 256) jest zwykle mniejszy niż rozmiar wejściowego obrazu. Aby uzyskać rozmiar maski, zadzwoń pod numer SegmentationMask#getWidth()
lub SegmentationMask#getHeight()
.
Bez określenia tej opcji segmentator przekalibruje surową maskę, aby dopasować ją do rozmiaru obrazu wejściowego. Użyj tej opcji, jeśli chcesz zastosować niestandardową logikę zmiany skali lub jeśli zmiana skali nie jest potrzebna w Twoim przypadku użycia.
Określ opcje segmentacji:
Kotlin
val options = SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build()
Java
SelfieSegmenterOptions options = new SelfieSegmenterOptions.Builder() .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) .enableRawSizeMask() .build();
Utwórz instancję Segmenter
. Przekaż określone opcje:
Kotlin
val segmenter = Segmentation.getClient(options)
Java
Segmenter segmenter = Segmentation.getClient(options);
2. Przygotuj obraz wejściowy
Aby przeprowadzić podział na segmenty obrazu, utwórz obiekt InputImage
z użyciem Bitmap
, media.Image
, ByteBuffer
, tablicy bajtów lub pliku na urządzeniu.
Obiekt InputImage
możesz utworzyć z różnych źródeł. Każde z nich opisane jest poniżej.
Korzystanie z media.Image
Aby utworzyć obiekt InputImage
na podstawie obiektu media.Image
, np. podczas robienia zdjęcia za pomocą aparatu urządzenia, prześlij obiekt media.Image
i obrót obrazu do obiektu InputImage.fromMediaImage()
.
Jeśli używasz biblioteki
CameraX, klasy OnImageCapturedListener
i
ImageAnalysis.Analyzer
obliczają wartość obrotu za Ciebie.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy) { val mediaImage = imageProxy.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { Image mediaImage = imageProxy.getImage(); if (mediaImage != null) { InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees()); // Pass image to an ML Kit Vision API // ... } } }
Jeśli nie używasz biblioteki aparatu, która podaje stopień obrotu obrazu, możesz go obliczyć na podstawie stopnia obrotu urządzenia i orientacji czujnika aparatu na urządzeniu:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 0) ORIENTATIONS.append(Surface.ROTATION_90, 90) ORIENTATIONS.append(Surface.ROTATION_180, 180) ORIENTATIONS.append(Surface.ROTATION_270, 270) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // Get the device's sensor orientation. val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360 } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360 } return rotationCompensation }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 0); ORIENTATIONS.append(Surface.ROTATION_90, 90); ORIENTATIONS.append(Surface.ROTATION_180, 180); ORIENTATIONS.append(Surface.ROTATION_270, 270); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // Get the device's sensor orientation. CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); if (isFrontFacing) { rotationCompensation = (sensorOrientation + rotationCompensation) % 360; } else { // back-facing rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360; } return rotationCompensation; }
Następnie prześlij obiekt media.Image
i wartość stopnia obrotu do InputImage.fromMediaImage()
:
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Za pomocą identyfikatora URI pliku
Aby utworzyć obiekt InputImage
na podstawie identyfikatora URI pliku, prześlij kontekst aplikacji i identyfikator URI pliku do funkcji InputImage.fromFilePath()
. Jest to przydatne, gdy używasz intencji ACTION_GET_CONTENT
, aby poprosić użytkownika o wybranie obrazu z aplikacji Galeria.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Korzystanie z ByteBuffer
lub ByteArray
Aby utworzyć obiekt InputImage
na podstawie obiektu ByteBuffer
lub ByteArray
, najpierw oblicz stopień obrotu obrazu w sposób opisany wcześniej w przypadku danych wejściowych media.Image
.
Następnie utwórz obiekt InputImage
z buforem lub tablicą, a także wysokość, szerokość, format kodowania kolorów i stopień obrotu obrazu:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ) // Or: val image = InputImage.fromByteArray( byteArray, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 ); // Or: InputImage image = InputImage.fromByteArray( byteArray, /* image width */480, /* image height */360, rotation, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Korzystanie z Bitmap
Aby utworzyć obiekt InputImage
z obiektu Bitmap
, zastosuj tę deklarację:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Obraz jest reprezentowany przez obiekt Bitmap
z stopniami obrotu.
3. Przetwarzanie obrazu
Przekaż przygotowany obiekt InputImage
do metody process
obiektu Segmenter
.
Kotlin
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener { results -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<SegmentationMask> result = segmenter.process(image) .addOnSuccessListener( new OnSuccessListener<SegmentationMask>() { @Override public void onSuccess(SegmentationMask mask) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
4. Pobieranie wyniku podziału na segmenty
Wynik podziału możesz uzyskać w ten sposób:
Kotlin
val mask = segmentationMask.getBuffer() val maskWidth = segmentationMask.getWidth() val maskHeight = segmentationMask.getHeight() for (val y = 0; y < maskHeight; y++) { for (val x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. val foregroundConfidence = mask.getFloat() } }
Java
ByteBuffer mask = segmentationMask.getBuffer(); int maskWidth = segmentationMask.getWidth(); int maskHeight = segmentationMask.getHeight(); for (int y = 0; y < maskHeight; y++) { for (int x = 0; x < maskWidth; x++) { // Gets the confidence of the (x,y) pixel in the mask being in the foreground. float foregroundConfidence = mask.getFloat(); } }
Pełny przykład użycia wyników podziału na segmenty znajdziesz w przykładowym pliku quickstart pakietu ML Kit.
Wskazówki dotyczące zwiększania skuteczności
Jakość wyników zależy od jakości obrazu wejściowego:
- Aby ML Kit mógł uzyskać dokładny wynik podziału na segmenty, obraz powinien mieć co najmniej 256 x 256 pikseli.
- Na dokładność może też wpływać niewłaściwe ustawienie ostrości. Jeśli nie uzyskasz zadowalających wyników, poproś użytkownika o ponowne zrobienie zdjęcia.
Jeśli chcesz używać segmentacji w aplikacji działającej w czasie rzeczywistym, postępuj zgodnie z tymi wytycznymi, aby uzyskać najlepszą liczbę klatek na sekundę:
- Użyj konta
STREAM_MODE
. - Rozważ robienie zdjęć w niższej rozdzielczości. Pamiętaj jednak o wymaganiach dotyczących wymiarów obrazu w tym interfejsie API.
- Rozważ włączenie opcji maski rozmiaru nieskompresowanego i połączenie całej logiki zmiany rozmiaru. Zamiast pozwalać interfejsowi API na zmianę rozmiaru maski tak, aby pasował do rozmiaru wejściowego obrazu, a potem ponownie zmieniać rozmiar, aby pasował do rozmiaru wyświetlania, po prostu poproś o maskę w niezmienionym rozmiarze i połącz te 2 kroki w jeden.
- Jeśli używasz interfejsu API
Camera
lubcamera2
, ograniczaj wywołania do detektory. Jeśli podczas działania detektora pojawi się nowa klatka wideo, odrzuć ją. Przykładem jest klasaVisionProcessorBase
w przykładowej aplikacji krótkiego wprowadzenia. - Jeśli używasz interfejsu API
CameraX
, sprawdź, czy strategia kontroli ciśnienia ma ustawioną wartość domyślną:ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST
. Dzięki temu masz pewność, że do analizy zostanie przesłany tylko jeden obraz. Jeśli podczas przetwarzania pojawi się więcej obrazów, zostaną one automatycznie odrzucone i nie zostaną umieszczone w kole do wysyłki. Gdy wywołana zostanie metoda ImageProxy.close(), aby zamknąć analizowany obraz, zostanie przesłany kolejny najnowszy obraz. - Jeśli używasz danych wyjściowych z detektora do nakładania grafiki na obraz wejściowy, najpierw uzyskaj wynik z ML Kit, a potem wyrenderuj obraz i nałóż go w jednym kroku. Jest on renderowany na powierzchni wyświetlacza tylko raz dla każdej ramki wejściowej. Przykładem są klasy
CameraSourcePreview
iGraphicOverlay
w przykładowej aplikacji krótkiego wprowadzenia. - Jeśli używasz interfejsu Camera2 API, rób zdjęcia w formacie
ImageFormat.YUV_420_888
. Jeśli używasz starszej wersji interfejsu Camera API, rób zdjęcia w formacieImageFormat.NV21
.