Mendeteksi, melacak, dan mengklasifikasikan objek dengan model klasifikasi kustom di Android

Tetap teratur dengan koleksi Simpan dan kategorikan konten berdasarkan preferensi Anda.
Anda dapat menggunakan ML Kit untuk mendeteksi dan melacak objek dalam frame video berturut-turut.

Saat Anda meneruskan gambar ke ML Kit, fitur ini akan mendeteksi hingga lima objek dalam gambar bersama dengan posisi setiap objek dalam gambar. Saat mendeteksi objek dalam streaming video, setiap objek memiliki ID unik yang dapat Anda gunakan untuk melacak objek dari frame ke frame.

Anda dapat menggunakan model klasifikasi gambar kustom untuk mengklasifikasikan objek yang terdeteksi. Lihat Model kustom dengan ML Kit untuk mendapatkan panduan tentang persyaratan kompatibilitas model, tempat untuk menemukan model terlatih, dan cara melatih model Anda sendiri.

Ada dua cara untuk mengintegrasikan model kustom. Anda dapat memaketkan model dengan memasukkannya ke dalam folder aset aplikasi, atau Anda dapat mendownloadnya secara dinamis dari Firebase. Tabel berikut membandingkan kedua opsi tersebut.

Model Gabungan Model yang Dihosting
Model ini adalah bagian dari APK aplikasi, yang menambah ukurannya. Model ini bukan bagian dari APK Anda. Cloud Hosting dihosting dengan mengupload ke Firebase Machine Learning.
Model akan langsung tersedia, bahkan saat perangkat Android sedang offline Model didownload sesuai permintaan
Tidak memerlukan project Firebase Memerlukan project Firebase
Anda harus memublikasikan ulang aplikasi Anda untuk mengupdate model Update model dapat dikirim tanpa memublikasikan ulang aplikasi
Tidak ada pengujian A/B bawaan Pengujian A/B yang mudah dengan Firebase Remote Config

Sebelum memulai

  1. Dalam file build.gradle level project, pastikan Anda memasukkan repositori Maven Google di bagian buildscript dan allprojects.

  2. Tambahkan dependensi untuk library Android ML Kit ke file gradle level aplikasi modul, biasanya app/build.gradle:

    Untuk memaketkan model dengan aplikasi Anda:

    dependencies {
      // ...
      // Object detection & tracking feature with custom bundled model
      implementation 'com.google.mlkit:object-detection-custom:17.0.0'
    }
    

    Untuk mendownload model dari Firebase secara dinamis, tambahkan dependensi linkFirebase:

    dependencies {
      // ...
      // Object detection & tracking feature with model downloaded
      // from firebase
      implementation 'com.google.mlkit:object-detection-custom:17.0.0'
      implementation 'com.google.mlkit:linkfirebase:17.0.0'
    }
    
  3. Jika ingin mendownload model, pastikan Anda menambahkan Firebase ke project Android, jika belum melakukannya. Langkah ini tidak diperlukan jika Anda memaketkan model.

1. Memuat model

Mengonfigurasi sumber model lokal

Untuk memaketkan model dengan aplikasi:

  1. Salin file model (biasanya diakhiri dengan .tflite atau .lite) ke folder assets/ aplikasi. (Anda mungkin perlu membuat folder terlebih dahulu dengan mengklik kanan folder app/, lalu mengklik Baru > Folder > Folder Aset.)

  2. Kemudian, tambahkan hal berikut ini ke file build.gradle aplikasi untuk memastikan agar Gradle tidak mengompresi file model saat mem-build aplikasi:

    android {
        // ...
        aaptOptions {
            noCompress "tflite"
            // or noCompress "lite"
        }
    }
    

    File model akan disertakan ke dalam paket aplikasi dan tersedia untuk ML Kit sebagai aset mentah.

  3. Buat objek LocalModel dengan menentukan jalur ke file model tersebut:

    Kotlin

    val localModel = LocalModel.Builder()
            .setAssetFilePath("model.tflite")
            // or .setAbsoluteFilePath(absolute file path to model file)
            // or .setUri(URI to model file)
            .build()

    Java

    LocalModel localModel =
        new LocalModel.Builder()
            .setAssetFilePath("model.tflite")
            // or .setAbsoluteFilePath(absolute file path to model file)
            // or .setUri(URI to model file)
            .build();

Mengonfigurasi sumber model yang dihosting Firebase

Untuk menggunakan model yang dihosting dari jarak jauh, buat objek CustomRemoteModel dengan FirebaseModelSource, dengan menentukan nama yang ditetapkan pada model saat memublikasikannya:

Kotlin

// Specify the name you assigned in the Firebase console.
val remoteModel =
    CustomRemoteModel
        .Builder(FirebaseModelSource.Builder("your_model_name").build())
        .build()

Java

// Specify the name you assigned in the Firebase console.
CustomRemoteModel remoteModel =
    new CustomRemoteModel
        .Builder(new FirebaseModelSource.Builder("your_model_name").build())
        .build();

Kemudian, mulai tugas download model dengan menentukan kondisi yang Anda inginkan untuk mengizinkan download. Jika model tidak ada di perangkat, atau jika versi model yang lebih baru tersedia, tugas ini akan mendownload model dari Firebase secara asinkron:

Kotlin

val downloadConditions = DownloadConditions.Builder()
    .requireWifi()
    .build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
    .addOnSuccessListener {
        // Success.
    }

Java

DownloadConditions downloadConditions = new DownloadConditions.Builder()
        .requireWifi()
        .build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(@NonNull Task task) {
                // Success.
            }
        });

Banyak aplikasi memulai tugas download dalam kode inisialisasinya, tetapi Anda dapat melakukannya kapan saja sebelum menggunakan model.

2. Mengonfigurasi detektor objek

Setelah mengonfigurasi sumber model, konfigurasikan detektor objek untuk kasus penggunaan Anda dengan objek CustomObjectDetectorOptions. Anda dapat mengubah setelan berikut:

Setelan Detektor Objek
Mode deteksi STREAM_MODE (default) | SINGLE_IMAGE_MODE

Pada STREAM_MODE (default), detektor objek berjalan dengan latensi yang rendah, tetapi dapat membuat hasil yang tidak lengkap (seperti kotak pembatas atau label kategori yang belum ditetapkan) pada beberapa pemanggilan pertama detektor. Selain itu, pada STREAM_MODE, detektor menetapkan ID pelacakan ke objek, yang dapat Anda gunakan untuk melacak objek lintas frame. Gunakan mode ini saat Anda ingin melacak objek, atau ketika latensi rendah lebih diutamakan, seperti saat memproses streaming video secara real time.

Pada SINGLE_IMAGE_MODE, detektor objek menampilkan hasil setelah kotak pembatas objek ditentukan. Jika Anda juga mengaktifkan klasifikasi, hasil akan ditampilkan setelah kotak pembatas dan label kategori tersedia. Akibatnya, latensi deteksi berpotensi lebih tinggi. Selain itu, pada SINGLE_IMAGE_MODE, ID pelacakan tidak ditetapkan. Gunakan mode ini jika latensi tidak diutamakan dan Anda tidak ingin mendapatkan hasil parsial.

Mendeteksi dan melacak beberapa objek false (default) | true

Mendeteksi dan melacak hingga 5 objek atau hanya objek yang paling tampil beda (default).

Mengklasifikasikan objek false (default) | true

Mengklasifikasikan objek yang terdeteksi atau tidak menggunakan model pengklasifikasi kustom yang diberikan. Untuk menggunakan model klasifikasi kustom, Anda harus menetapkannya ke true.

Nilai minimum keyakinan klasifikasi

Skor keyakinan minimum dari label yang terdeteksi. Jika kebijakan ini tidak disetel, nilai minimum pengklasifikasi yang ditentukan oleh metadata model akan digunakan. Jika model tidak berisi metadata apa pun atau metadata tidak menentukan nilai minimum pengklasifikasi, nilai minimum default 0,0 akan digunakan.

Label maksimum per objek

Jumlah maksimum label per objek yang akan ditampilkan oleh detektor. Jika tidak disetel, nilai default 10 akan digunakan.

API deteksi dan pelacakan objek dioptimalkan untuk dua kasus penggunaan inti berikut ini:

  • Deteksi langsung dan pelacakan objek paling tampil beda di jendela bidik kamera.
  • Deteksi banyak objek dalam gambar statis.

Untuk mengonfigurasi API bagi kasus penggunaan ini, dengan model yang dipaketkan secara lokal:

Kotlin

// Live detection and tracking
val customObjectDetectorOptions =
        CustomObjectDetectorOptions.Builder(localModel)
        .setDetectorMode(CustomObjectDetectorOptions.STREAM_MODE)
        .enableClassification()
        .setClassificationConfidenceThreshold(0.5f)
        .setMaxPerObjectLabelCount(3)
        .build()

// Multiple object detection in static images
val customObjectDetectorOptions =
        CustomObjectDetectorOptions.Builder(localModel)
        .setDetectorMode(CustomObjectDetectorOptions.SINGLE_IMAGE_MODE)
        .enableMultipleObjects()
        .enableClassification()
        .setClassificationConfidenceThreshold(0.5f)
        .setMaxPerObjectLabelCount(3)
        .build()

val objectDetector =
        ObjectDetection.getClient(customObjectDetectorOptions)

Java

// Live detection and tracking
CustomObjectDetectorOptions customObjectDetectorOptions =
        new CustomObjectDetectorOptions.Builder(localModel)
                .setDetectorMode(CustomObjectDetectorOptions.STREAM_MODE)
                .enableClassification()
                .setClassificationConfidenceThreshold(0.5f)
                .setMaxPerObjectLabelCount(3)
                .build();

// Multiple object detection in static images
CustomObjectDetectorOptions customObjectDetectorOptions =
        new CustomObjectDetectorOptions.Builder(localModel)
                .setDetectorMode(CustomObjectDetectorOptions.SINGLE_IMAGE_MODE)
                .enableMultipleObjects()
                .enableClassification()
                .setClassificationConfidenceThreshold(0.5f)
                .setMaxPerObjectLabelCount(3)
                .build();

ObjectDetector objectDetector =
    ObjectDetection.getClient(customObjectDetectorOptions);

Jika Anda memiliki model yang dihosting dari jarak jauh, Anda harus memeriksa apakah model tersebut sudah didownload sebelum menjalankannya. Anda dapat memeriksa status tugas download model menggunakan metode isModelDownloaded() pengelola model.

Meskipun Anda hanya perlu mengonfirmasi hal ini sebelum menjalankan detektor, jika Anda memiliki model yang dihosting dari jarak jauh dan model yang dipaketkan secara lokal, mungkin pemeriksaan ini perlu dilakukan saat membuat instance detektor gambar: buat detektor dari model jarak jauh jika model tersebut telah didownload, dan dari model lokal jika belum didownload.

Kotlin

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded ->
    val optionsBuilder =
        if (isDownloaded) {
            CustomObjectDetectorOptions.Builder(remoteModel)
        } else {
            CustomObjectDetectorOptions.Builder(localModel)
        }
    val customObjectDetectorOptions = optionsBuilder
            .setDetectorMode(CustomObjectDetectorOptions.SINGLE_IMAGE_MODE)
            .enableClassification()
            .setClassificationConfidenceThreshold(0.5f)
            .setMaxPerObjectLabelCount(3)
            .build()
    val objectDetector =
        ObjectDetection.getClient(customObjectDetectorOptions)
}

Java

RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener(new OnSuccessListener() {
        @Override
        public void onSuccess(Boolean isDownloaded) {
            CustomObjectDetectorOptions.Builder optionsBuilder;
            if (isDownloaded) {
                optionsBuilder = new CustomObjectDetectorOptions.Builder(remoteModel);
            } else {
                optionsBuilder = new CustomObjectDetectorOptions.Builder(localModel);
            }
            CustomObjectDetectorOptions customObjectDetectorOptions = optionsBuilder
                .setDetectorMode(CustomObjectDetectorOptions.SINGLE_IMAGE_MODE)
                .enableClassification()
                .setClassificationConfidenceThreshold(0.5f)
                .setMaxPerObjectLabelCount(3)
                .build();
            ObjectDetector objectDetector =
                ObjectDetection.getClient(customObjectDetectorOptions);
        }
});

Jika Anda hanya memiliki model yang dihosting dari jarak jauh, Anda harus menonaktifkan fungsionalitas terkait model, misalnya membuat sebagian UI berwarna abu-abu atau menyembunyikannya, hingga Anda mengonfirmasi model tersebut telah didownload. Anda dapat melakukannya dengan menambahkan pemroses ke metode download() pengelola model:

Kotlin

RemoteModelManager.getInstance().download(remoteModel, conditions)
    .addOnSuccessListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

Java

RemoteModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

3. Menyiapkan gambar input

Buat objek InputImage dari gambar Anda. Pendeteksi objek berjalan langsung dari Bitmap, ByteBuffer NV21, atau media.Image YUV_420_888. Sebaiknya buat InputImage dari sumber tersebut jika Anda memiliki akses langsung ke salah satu sumber tersebut. Jika Anda membuat InputImage dari sumber lain, kami akan menangani konversi secara internal untuk Anda dan mungkin kurang efisien.

Anda dapat membuat objek InputImage dari sumber yang berbeda, masing-masing dijelaskan di bawah.

Menggunakan media.Image

Untuk membuat objek InputImage dari objek media.Image, seperti saat mengambil gambar dari kamera perangkat, teruskan objek media.Image dan rotasi gambar ke InputImage.fromMediaImage().

Jika Anda menggunakan library CameraX, class OnImageCapturedListener dan ImageAnalysis.Analyzer menghitung nilai rotasi untuk Anda.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Jika tidak menggunakan library kamera yang memberi Anda derajat rotasi gambar, Anda dapat menghitungnya dari derajat rotasi perangkat dan orientasi sensor kamera di perangkat:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Kemudian, teruskan objek media.Image dan nilai derajat rotasi ke InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Menggunakan URI file

Untuk membuat objek InputImage dari URI file, teruskan konteks aplikasi dan URI file ke InputImage.fromFilePath(). Hal ini berguna saat Anda menggunakan intent ACTION_GET_CONTENT untuk meminta pengguna memilih gambar dari aplikasi galeri mereka.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Menggunakan ByteBuffer atau ByteArray

Untuk membuat objek InputImage dari ByteBuffer atau ByteArray, pertama-tama hitung derajat rotasi gambar seperti yang dijelaskan sebelumnya untuk input media.Image. Kemudian, buat objek InputImage dengan buffering atau array, beserta tinggi, lebar, format encoding warna, dan derajat rotasi gambar.

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Menggunakan Bitmap

Untuk membuat objek InputImage dari objek Bitmap, buat deklarasi berikut:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Gambar direpresentasikan oleh objek Bitmap bersama dengan derajat rotasi.

4. Menjalankan detektor objek

Kotlin

objectDetector
    .process(image)
    .addOnFailureListener(e -> {...})
    .addOnSuccessListener(results -> {
        for (detectedObject in results) {
          // ...
        }
    });

Java

objectDetector
    .process(image)
    .addOnFailureListener(e -> {...})
    .addOnSuccessListener(results -> {
        for (DetectedObject detectedObject : results) {
          // ...
        }
    });

5. Mendapatkan informasi tentang objek berlabel

Jika panggilan ke process() berhasil, daftar DetectedObject akan diteruskan ke pemroses yang berhasil.

Setiap DetectedObject berisi properti berikut:

Kotak pembatas Rect yang menunjukkan posisi objek dalam gambar.
ID Pelacakan Bilangan bulat yang mengidentifikasi objek lintas gambar. Null dalam SINGLE_IMAGE_MODE.
Label
Deskripsi label Deskripsi teks label. Hanya ditampilkan jika metadata model TensorFlow Lite berisi deskripsi label.
Indeks label Indeks label di antara semua label yang didukung oleh pengklasifikasi.
Keyakinan label Tingkat keyakinan klasifikasi objek.

Kotlin

// The list of detected objects contains one item if multiple
// object detection wasn't enabled.
for (detectedObject in results) {
    val boundingBox = detectedObject.boundingBox
    val trackingId = detectedObject.trackingId
    for (label in detectedObject.labels) {
      val text = label.text
      val index = label.index
      val confidence = label.confidence
    }
}

Java

// The list of detected objects contains one item if multiple
// object detection wasn't enabled.
for (DetectedObject detectedObject : results) {
  Rect boundingBox = detectedObject.getBoundingBox();
  Integer trackingId = detectedObject.getTrackingId();
  for (Label label : detectedObject.getLabels()) {
    String text = label.getText();
    int index = label.getIndex();
    float confidence = label.getConfidence();
  }
}

Memastikan pengalaman pengguna yang baik

Untuk mendapatkan pengalaman pengguna terbaik, ikuti panduan berikut di aplikasi Anda:

  • Keberhasilan deteksi objek bergantung pada kompleksitas visual objek. Agar terdeteksi, objek dengan sedikit fitur visual mungkin perlu mengambil sebagian besar gambar. Anda sebaiknya memberikan panduan kepada pengguna tentang menangkap input yang berfungsi baik dengan jenis objek yang ingin Anda deteksi.
  • Saat Anda menggunakan klasifikasi, jika ingin mendeteksi objek yang tidak secara jelas termasuk dalam kategori yang didukung, terapkan penanganan khusus untuk objek yang tidak diketahui.

Selain itu, lihat aplikasi contoh Desain Material ML Kit dan koleksi Pola Desain Material untuk fitur yang didukung machine learning.

Meningkatkan performa

Jika ingin menggunakan deteksi objek dalam aplikasi real-time, ikuti pedoman ini untuk mencapai frekuensi frame terbaik:

  • Saat menggunakan mode streaming dalam aplikasi real-time, jangan gunakan beberapa deteksi objek, karena sebagian besar perangkat tidak dapat menghasilkan frekuensi frame yang memadai.

  • Jika Anda menggunakan API Camera atau camera2, throttle panggilan ke detektor. Jika frame video baru tersedia saat detektor sedang berjalan, hapus frame tersebut. Lihat class VisionProcessorBase di aplikasi contoh panduan memulai untuk mengetahui contohnya.
  • Jika Anda menggunakan CameraX API, pastikan strategi backpressure ditetapkan ke nilai defaultnya ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Hal ini menjamin hanya satu gambar yang akan dikirim untuk analisis dalam satu waktu. Jika ada lebih banyak gambar yang dihasilkan saat analyzer sibuk, gambar tersebut akan dihapus secara otomatis dan tidak diantrekan untuk pengiriman. Setelah gambar yang dianalisis ditutup dengan memanggil ImageProxy.close(), gambar terbaru berikutnya akan dikirimkan.
  • Jika menggunakan output detektor untuk menempatkan grafis pada gambar input, pertama-tama dapatkan hasil dari ML Kit, lalu render gambar dan tempatkan grafis dalam satu langkah. Proses ini dirender ke permukaan tampilan hanya sekali untuk setiap frame input. Lihat class CameraSourcePreview dan GraphicOverlay di aplikasi contoh panduan memulai untuk mengetahui contohnya.
  • Jika menggunakan Camera2 API, ambil gambar dalam format ImageFormat.YUV_420_888. Jika menggunakan Camera API versi lama, ambil gambar dalam format ImageFormat.NV21.