在 Android 上使用 ML Kit 偵測及追蹤物件

您可以使用 ML Kit 偵測及追蹤連續影片畫面中的物件。

將圖片傳送至 ML Kit 時,模型最多可偵測圖片中的五個物件 以及每個物件在圖片中的位置。偵測 中的物件時 影片串流,每個物件都有專屬 ID,可用來追蹤 每個影格都不成問題您也可以視需要啟用粗略物件 也就是將物件加上廣泛類別說明的標籤

立即試用

事前準備

  1. 請務必在專案層級的 build.gradle 檔案中納入 位於 buildscript 和 的 Google Maven 存放區 allprojects 個版面。
  2. 將 ML Kit Android 程式庫的依附元件新增至模組的 應用程式層級的 Gradle 檔案,通常為 app/build.gradle
    dependencies {
      // ...
    
      implementation 'com.google.mlkit:object-detection:17.0.2'
    
    }
    

1. 設定物件偵測工具

如要偵測及追蹤物件,請先建立 ObjectDetector 的執行個體,並 視需要指定要變更的偵測工具設定 預設值。

  1. 使用 ObjectDetectorOptions 物件。您可以變更下列設定 設定:

    物件偵測器設定
    偵測模式 STREAM_MODE (預設) |SINGLE_IMAGE_MODE

    STREAM_MODE (預設) 中,物件偵測工具會執行 低延遲,但可能產生不完整的結果 (例如 未指定定界框或類別標籤) 每個回呼函式的保留時間。此外,在「STREAM_MODE」中: 偵測工具會指派追蹤 ID 給物件,您可以用來 跨影格追蹤物件使用此模式追蹤 或低延遲的重要時機 觀看串流影片

    SINGLE_IMAGE_MODE 中,物件偵測工具會傳回 會測量物件的定界框。如果發生以下情況: 也會啟用分類功能 方塊和類別標籤因此 可能更長的時間偵測。此外,在 SINGLE_IMAGE_MODE,未指派追蹤 ID。使用 因此若延遲時間不重要且也不想處理 但只有部分結果

    偵測並追蹤多個物件 false (預設) |true

    偵測及追蹤最多五個物件 明顯的物件 (預設)。

    將物件分類 false (預設) |true

    是否將偵測到的物件歸類為粗略的類別。 啟用時,物件偵測工具會將物件 以下類別:時尚商品、食品、居家用品 例如地點和植物

    物件偵測及追蹤 API 已針對這兩種核心用途進行最佳化 案件:

    • 即時偵測和追蹤相機中最顯眼的物體 觀景窗。
    • 偵測靜態圖片中的多個物件。

    如何針對這些用途設定 API:

    Kotlin

    // Live detection and tracking
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
            .enableClassification()  // Optional
            .build()
    
    // Multiple object detection in static images
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
            .enableMultipleObjects()
            .enableClassification()  // Optional
            .build()

    Java

    // Live detection and tracking
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
                    .enableClassification()  // Optional
                    .build();
    
    // Multiple object detection in static images
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
                    .enableMultipleObjects()
                    .enableClassification()  // Optional
                    .build();
  2. 取得 ObjectDetector 的例項:

    Kotlin

    val objectDetector = ObjectDetection.getClient(options)

    Java

    ObjectDetector objectDetector = ObjectDetection.getClient(options);

2. 準備輸入圖片

如要偵測及追蹤物件,請將圖片傳遞至 ObjectDetector 執行個體的 process() 方法

物件偵測工具會直接從 Bitmap、NV21 ByteBuffer 或 YUV_420_888 media.Image。從這些來源建構 InputImage 如果您可以直接存取其中一個功能,就建議您提供這個選項。如果建構 其他來源的InputImage,我們會處理轉換 但效率可能會降低

針對連續影片或圖片影格,執行下列操作:

您可以建立InputImage 不同來源的 ANR 物件,說明如下。

使用 media.Image

如要建立InputImage 物件,例如從 media.Image 物件擷取圖片 裝置的相機,請傳遞 media.Image 物件和映像檔的 旋轉為 InputImage.fromMediaImage()

如果您使用 CameraX 程式庫、OnImageCapturedListenerImageAnalysis.Analyzer 類別會計算旋轉值 不必確保憑證管理是否適當 因為 Google Cloud 會為您管理安全性

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

如果您沒有使用相機程式庫提供圖片的旋轉角度, 可根據裝置的旋轉角度和相機方向來計算 感應器:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

然後,請傳遞 media.Image 物件和 將度數值旋轉為 InputImage.fromMediaImage()

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

使用檔案 URI

如要建立InputImage 物件,將應用程式結構定義與檔案 URI 傳遞至 InputImage.fromFilePath()。如果您要 使用 ACTION_GET_CONTENT 意圖提示使用者選取 取自圖片庫應用程式中的圖片。

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

使用 ByteBufferByteArray

如要建立InputImage ByteBufferByteArray 的物件,請先計算圖片 與先前 media.Image 輸入中所述的旋轉角度相同。 接著,使用緩衝區或陣列建立 InputImage 物件,以及 高度、寬度、顏色編碼格式以及旋轉角度:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

使用 Bitmap

如要建立InputImage 物件中,Bitmap 物件,請做出以下宣告:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

圖像以 Bitmap 物件和旋轉角度表示。

3. 處理圖片

將圖片傳遞至 process() 方法:

Kotlin

objectDetector.process(image)
    .addOnSuccessListener { detectedObjects ->
        // Task completed successfully
        // ...
    }
    .addOnFailureListener { e ->
        // Task failed with an exception
        // ...
    }

Java

objectDetector.process(image)
    .addOnSuccessListener(
        new OnSuccessListener<List<DetectedObject>>() {
            @Override
            public void onSuccess(List<DetectedObject> detectedObjects) {
                // Task completed successfully
                // ...
            }
        })
    .addOnFailureListener(
        new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. 取得偵測到的物件相關資訊

如果呼叫 process() 成功,系統會將 DetectedObject 清單傳遞至 成功事件監聽器

每個 DetectedObject 都包含下列屬性:

定界框 Rect,指出物件在 圖片。
追蹤 ID 一個整數,可在圖片中識別物件。出現空值 SINGLE_IMAGE_MODE。
標籤
標籤說明 標籤的文字說明。這個值會是其中一個 String PredefinedCategory 中定義的常數。
標籤索引 此標籤在 分類器。這會是你定義的其中一個整數常數 在「PredefinedCategory」中。
標籤可信度 物件分類的可信度值。

Kotlin

for (detectedObject in detectedObjects) {
    val boundingBox = detectedObject.boundingBox
    val trackingId = detectedObject.trackingId
    for (label in detectedObject.labels) {
        val text = label.text
        if (PredefinedCategory.FOOD == text) {
            ...
        }
        val index = label.index
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        val confidence = label.confidence
    }
}

Java

// The list of detected objects contains one item if multiple
// object detection wasn't enabled.
for (DetectedObject detectedObject : detectedObjects) {
    Rect boundingBox = detectedObject.getBoundingBox();
    Integer trackingId = detectedObject.getTrackingId();
    for (Label label : detectedObject.getLabels()) {
        String text = label.getText();
        if (PredefinedCategory.FOOD.equals(text)) {
            ...
        }
        int index = label.getIndex();
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        float confidence = label.getConfidence();
    }
}

確保良好的使用者體驗

為獲得最佳使用者體驗,請在應用程式中遵循以下規範:

  • 是否成功偵測物件,取決於物件的視覺複雜度。於 不過,如果物體具有少量視覺特徵 將圖片放大出來您應該向使用者提供 以便擷取適用於目標物件種類的輸入資料。
  • 使用分類功能時,您可以偵測不會下降的物件 完整地新增至支援的類別,並針對不明狀況導入特殊處理 如需儲存大量結構化物件 建議使用 Cloud Bigtable

此外,也請參閱 ML Kit Material Design 展示應用程式和 質感設計 機器學習支援功能的模式

提升效能

如要在即時應用程式中使用物件偵測,請按照這些 實現最佳影格速率:

  • 在即時應用程式中使用串流模式時,請不要使用多個 物件偵測,因為大多數裝置無法產生足夠的影格速率。

  • 如果不需要分類功能,請停用分類功能。

  • 如果您使用 Cameracamera2 API、 限制對偵測工具的呼叫如果影片有新影片 影格掉落時,表示影格是否可用。詳情請參閱 VisionProcessorBase 類別的範例。
  • 如果您是使用 CameraX API, 請務必將背壓策略設為預設值 ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST。 這麼做可保證系統一次只會傳送一張圖片進行分析。如果圖片較多 會在分析器忙碌時產生,這些作業會自動遭到捨棄,不會排入佇列 廣告放送。以呼叫方式關閉要分析的圖片後 ImageProxy.close(),最新一張圖片才會放送。
  • 如果使用偵測工具的輸出內容將圖像重疊 先從 ML Kit 取得結果,然後算繪圖片 並疊加單一步驟這會轉譯至顯示介面 每個輸入影格只能建立一次詳情請參閱 CameraSourcePreview 如需範例,請前往快速入門導覽課程範例應用程式中的 GraphicOverlay 類別。
  • 如果你使用 Camera2 API, ImageFormat.YUV_420_888 格式。如果使用舊版 Camera API,請以 ImageFormat.NV21 格式。