Phát hiện và theo dõi các đối tượng bằng Bộ công cụ máy học trên Android

Bạn có thể sử dụng Bộ công cụ máy học để phát hiện và theo dõi các đối tượng trong các khung hình video liên tiếp.

Khi bạn truyền một hình ảnh đến Bộ công cụ máy học, công cụ này sẽ phát hiện tối đa 5 đối tượng trong hình ảnh cùng với vị trí của từng đối tượng trong hình ảnh. Khi phát hiện các đối tượng trong luồng video, mỗi đối tượng sẽ có một mã nhận dạng duy nhất mà bạn có thể dùng để theo dõi đối tượng từ khung này sang khung khác. Bạn cũng có thể bật tính năng phân loại đối tượng thô nếu muốn. Nhãn này sẽ gắn nhãn các đối tượng bằng nội dung mô tả về danh mục rộng.

Dùng thử

Trước khi bắt đầu

  1. Trong tệp build.gradle cấp dự án, hãy nhớ thêm kho lưu trữ Maven của Google vào cả hai phần buildscriptallprojects.
  2. Thêm các phần phụ thuộc cho thư viện Android ML Kit vào tệp gradle cấp ứng dụng của mô-đun, thường là app/build.gradle:
    dependencies {
      // ...
    
      implementation 'com.google.mlkit:object-detection:17.0.0'
    
    }
    

1. Định cấu hình trình phát hiện đối tượng

Để phát hiện và theo dõi các đối tượng, trước tiên, hãy tạo một thực thể của ObjectDetector rồi tuỳ ý chỉ định chế độ cài đặt của trình phát hiện mà bạn muốn thay đổi từ chế độ mặc định.

  1. Định cấu hình trình phát hiện đối tượng cho trường hợp sử dụng của bạn bằng đối tượng ObjectDetectorOptions. Bạn có thể thay đổi các chế độ cài đặt sau:

    Cài đặt trình phát hiện đối tượng
    Chế độ phát hiện STREAM_MODE (mặc định) | SINGLE_IMAGE_MODE

    Trong STREAM_MODE (mặc định), trình phát hiện đối tượng sẽ chạy với độ trễ thấp, nhưng có thể tạo ra kết quả không đầy đủ (chẳng hạn như các hộp giới hạn hoặc nhãn danh mục không xác định) trong một số lệnh gọi đầu tiên của trình phát hiện. Ngoài ra, trong STREAM_MODE, trình phát hiện sẽ gán mã theo dõi cho các đối tượng mà bạn có thể dùng để theo dõi đối tượng trên các khung hình. Sử dụng chế độ này khi bạn muốn theo dõi các đối tượng hoặc khi độ trễ thấp là yếu tố quan trọng, chẳng hạn như khi xử lý các luồng video theo thời gian thực.

    Trong SINGLE_IMAGE_MODE, trình phát hiện đối tượng sẽ trả về kết quả sau khi xác định hộp giới hạn của đối tượng. Nếu bạn cũng bật tính năng phân loại, thì kết quả đó sẽ trả về kết quả sau khi cả hộp giới hạn và nhãn danh mục đều có sẵn. Do đó, độ trễ phát hiện có thể cao hơn. Ngoài ra, trong SINGLE_IMAGE_MODE, mã theo dõi sẽ không được chỉ định. Hãy sử dụng chế độ này nếu độ trễ không quan trọng và bạn không muốn xử lý một phần kết quả.

    Phát hiện và theo dõi nhiều đối tượng false (mặc định) | true

    Liệu có phát hiện và theo dõi tối đa 5 đối tượng hoặc chỉ phát hiện đối tượng nổi bật nhất (mặc định) hay không.

    Phân loại đối tượng false (mặc định) | true

    Liệu có phân loại các đối tượng được phát hiện thành các danh mục thô hay không. Khi được bật, trình phát hiện đối tượng sẽ phân loại các đối tượng vào các danh mục sau: hàng thời trang, thực phẩm, hàng gia dụng, địa điểm và thực vật.

    API theo dõi và phát hiện đối tượng được tối ưu hoá cho hai trường hợp sử dụng cốt lõi sau:

    • Phát hiện và theo dõi trực tiếp đối tượng nổi bật nhất trong kính ngắm máy ảnh.
    • Phát hiện nhiều đối tượng từ một hình ảnh tĩnh.

    Để định cấu hình API cho các trường hợp sử dụng này:

    Kotlin

    // Live detection and tracking
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
            .enableClassification()  // Optional
            .build()
    
    // Multiple object detection in static images
    val options = ObjectDetectorOptions.Builder()
            .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
            .enableMultipleObjects()
            .enableClassification()  // Optional
            .build()

    Java

    // Live detection and tracking
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.STREAM_MODE)
                    .enableClassification()  // Optional
                    .build();
    
    // Multiple object detection in static images
    ObjectDetectorOptions options =
            new ObjectDetectorOptions.Builder()
                    .setDetectorMode(ObjectDetectorOptions.SINGLE_IMAGE_MODE)
                    .enableMultipleObjects()
                    .enableClassification()  // Optional
                    .build();
  2. Nhận một bản sao của ObjectDetector:

    Kotlin

    val objectDetector = ObjectDetection.getClient(options)

    Java

    ObjectDetector objectDetector = ObjectDetection.getClient(options);

2. Chuẩn bị hình ảnh nhập vào

Để phát hiện và theo dõi đối tượng, hãy truyền hình ảnh đến phương thức process() của thực thể ObjectDetector.

Trình phát hiện đối tượng chạy trực tiếp từ Bitmap, NV21 ByteBuffer hoặc YUV_420_888 media.Image. Bạn nên tạo InputImage từ các nguồn đó nếu có quyền truy cập trực tiếp vào một trong các nguồn đó. Nếu bạn tạo InputImage từ các nguồn khác, chúng tôi sẽ xử lý nội bộ lượt chuyển đổi cho bạn và hiệu quả này có thể sẽ kém hiệu quả hơn.

Đối với mỗi khung hình của video hoặc hình ảnh theo trình tự, hãy làm như sau:

Bạn có thể tạo một đối tượng InputImage từ nhiều nguồn, mỗi nguồn được giải thích ở bên dưới.

Sử dụng media.Image

Để tạo một đối tượng InputImage từ đối tượng media.Image, chẳng hạn như khi bạn chụp ảnh từ máy ảnh của thiết bị, hãy truyền đối tượng media.Image và độ xoay của hình ảnh đến InputImage.fromMediaImage().

Nếu bạn sử dụng thư viện CameraX, các lớp OnImageCapturedListenerImageAnalysis.Analyzer sẽ tính toán giá trị xoay vòng cho bạn.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Nếu không sử dụng thư viện máy ảnh cung cấp cho bạn độ xoay của hình ảnh, bạn có thể tính toán độ này từ độ xoay của thiết bị và hướng của cảm biến máy ảnh trong thiết bị:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Sau đó, hãy truyền đối tượng media.Image và giá trị độ xoay vòng đến InputImage.fromMediaImage():

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Sử dụng URI tệp

Để tạo một đối tượng InputImage từ URI tệp, hãy truyền ngữ cảnh ứng dụng và URI tệp cho InputImage.fromFilePath(). Điều này sẽ hữu ích khi bạn sử dụng ý định ACTION_GET_CONTENT để nhắc người dùng chọn một hình ảnh từ ứng dụng thư viện.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Sử dụng ByteBuffer hoặc ByteArray

Để tạo một đối tượng InputImage từ ByteBuffer hoặc ByteArray, trước tiên, hãy tính độ xoay hình ảnh như mô tả trước đó cho phương thức nhập media.Image. Sau đó, hãy tạo đối tượng InputImage kèm theo vùng đệm hoặc mảng cùng với chiều cao, chiều rộng, định dạng mã hoá màu và độ xoay:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Sử dụng Bitmap

Để tạo một đối tượng InputImage từ đối tượng Bitmap, hãy khai báo như sau:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Hình ảnh này được biểu thị bằng một đối tượng Bitmap cùng với độ xoay.

3. Xử lý hình ảnh

Truyền hình ảnh đến phương thức process():

Kotlin

objectDetector.process(image)
    .addOnSuccessListener { detectedObjects ->
        // Task completed successfully
        // ...
    }
    .addOnFailureListener { e ->
        // Task failed with an exception
        // ...
    }

Java

objectDetector.process(image)
    .addOnSuccessListener(
        new OnSuccessListener<List<DetectedObject>>() {
            @Override
            public void onSuccess(List<DetectedObject> detectedObjects) {
                // Task completed successfully
                // ...
            }
        })
    .addOnFailureListener(
        new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

4. Nhận thông tin về các đối tượng được phát hiện

Nếu lệnh gọi đến process() thành công, danh sách các DetectedObject sẽ được truyền đến trình nghe thành công.

Mỗi DetectedObject chứa các thuộc tính sau:

Hộp đường viền Rect cho biết vị trí của đối tượng trong hình ảnh.
Mã theo dõi Số nguyên xác định đối tượng trên các hình ảnh. Rỗng trong SINGLE_IMAGE_MODE.
Nhãn
Mô tả nhãn Mô tả văn bản của nhãn. Đây sẽ là một trong các hằng số chuỗi được xác định trong PredefinedCategory.
Chỉ mục nhãn Chỉ mục của nhãn trong số tất cả các nhãn mà bộ phân loại hỗ trợ. Đây sẽ là một trong các hằng số nguyên được xác định trong PredefinedCategory.
Độ tin cậy của nhãn Giá trị tin cậy của phân loại đối tượng.

Kotlin

for (detectedObject in detectedObjects) {
    val boundingBox = detectedObject.boundingBox
    val trackingId = detectedObject.trackingId
    for (label in detectedObject.labels) {
        val text = label.text
        if (PredefinedCategory.FOOD == text) {
            ...
        }
        val index = label.index
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        val confidence = label.confidence
    }
}

Java

// The list of detected objects contains one item if multiple
// object detection wasn't enabled.
for (DetectedObject detectedObject : detectedObjects) {
    Rect boundingBox = detectedObject.getBoundingBox();
    Integer trackingId = detectedObject.getTrackingId();
    for (Label label : detectedObject.getLabels()) {
        String text = label.getText();
        if (PredefinedCategory.FOOD.equals(text)) {
            ...
        }
        int index = label.getIndex();
        if (PredefinedCategory.FOOD_INDEX == index) {
            ...
        }
        float confidence = label.getConfidence();
    }
}

Đảm bảo trải nghiệm người dùng tuyệt vời

Để có trải nghiệm người dùng tốt nhất, hãy thực hiện theo các nguyên tắc sau trong ứng dụng của bạn:

  • Việc phát hiện thành công đối tượng phụ thuộc vào độ phức tạp của hình ảnh của đối tượng. Để được phát hiện, các đối tượng có ít tính năng trực quan có thể cần chiếm phần lớn hơn của hình ảnh. Bạn nên hướng dẫn người dùng về cách lấy dữ liệu đầu vào hoạt động tốt với loại đối tượng mà bạn muốn phát hiện.
  • Khi sử dụng tính năng phân loại, nếu muốn phát hiện các đối tượng không nằm trong danh mục được hỗ trợ, hãy triển khai cách xử lý đặc biệt cho các đối tượng không xác định.

Ngoài ra, hãy xem ứng dụng quảng cáo Material Design trong Material Design và bộ sưu tập Mẫu cho tính năng máy học của Material Design.

Cải thiện hiệu suất

Nếu bạn muốn sử dụng tính năng phát hiện đối tượng trong ứng dụng theo thời gian thực, hãy làm theo các nguyên tắc sau để đạt được tốc độ khung hình tốt nhất:

  • Khi bạn sử dụng chế độ phát trực tuyến trong một ứng dụng theo thời gian thực, đừng sử dụng tính năng phát hiện nhiều đối tượng vì hầu hết thiết bị sẽ không thể tạo đủ tốc độ khung hình.

  • Tắt tính năng phân loại nếu không cần.

  • Nếu bạn sử dụng API Camera hoặc API camera2, hãy điều chỉnh các lệnh gọi đến trình phát hiện. Nếu khung video mới hoạt động trong khi trình phát hiện đang chạy, hãy thả khung hình đó. Hãy xem lớp VisionProcessorBase trong ứng dụng mẫu khởi động nhanh để biết ví dụ.
  • Nếu bạn sử dụng API CameraX, hãy đảm bảo rằng chiến lược áp lực ngược được đặt thành giá trị mặc định ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST. Việc này đảm bảo mỗi lần bạn chỉ gửi được một hình ảnh để phân tích. Nếu hệ thống phân tích nhiều hình ảnh hơn khi trình phân tích đang bận, chúng sẽ tự động được thả và không được đưa vào hàng đợi để phân phối. Sau khi hình ảnh đang được phân tích được đóng bằng cách gọi ImageProxy.close(), hình ảnh mới nhất tiếp theo sẽ được phân phối.
  • Nếu bạn sử dụng đầu ra của trình phát hiện để chồng nội dung đồ hoạ lên hình ảnh đầu vào, trước tiên, hãy lấy kết quả từ Bộ công cụ máy học, sau đó kết xuất hình ảnh và lớp phủ trong một bước duy nhất. Thao tác này sẽ chỉ kết xuất với bề mặt hiển thị một lần cho mỗi khung đầu vào. Hãy xem ví dụ về các lớp CameraSourcePreview GraphicOverlay trong ứng dụng mẫu bắt đầu nhanh.
  • Nếu bạn sử dụng API Camera2, hãy chụp ảnh ở định dạng ImageFormat.YUV_420_888. Nếu bạn sử dụng API Máy ảnh cũ hơn, hãy chụp ảnh ở định dạng ImageFormat.NV21.