Пометка изображений пользовательской моделью на iOS

Оптимизируйте свои подборки Сохраняйте и классифицируйте контент в соответствии со своими настройками.

Вы можете использовать ML Kit, чтобы распознавать объекты на изображении и маркировать их. Этот API поддерживает широкий спектр пользовательских моделей классификации изображений. См. Пользовательские модели с комплектом ML , чтобы узнать о требованиях к совместимости моделей, где найти предварительно обученные модели и как обучать собственные модели.

Существует два способа интеграции пользовательской модели. Вы можете связать модель, поместив ее в папку активов вашего приложения, или вы можете динамически загрузить ее из Firebase. В следующей таблице сравниваются два варианта.

Комплектная модель Размещенная модель
Модель является частью APK вашего приложения, что увеличивает его размер. Модель не является частью вашего APK. Он размещается путем загрузки в Firebase Machine Learning .
Модель доступна сразу, даже когда Android-устройство не в сети Модель скачивается по запросу
Нет необходимости в проекте Firebase Требуется проект Firebase
Вы должны повторно опубликовать свое приложение, чтобы обновить модель. Отправляйте обновления модели без повторной публикации приложения
Нет встроенного A/B-тестирования Простое A/B-тестирование с помощью Firebase Remote Config

Попробуйте

Прежде чем вы начнете

  1. Включите библиотеки ML Kit в свой подфайл:

    Для связывания модели с вашим приложением:

    pod 'GoogleMLKit/ImageLabelingCustom', '3.2.0'
    

    Для динамической загрузки модели из Firebase добавьте зависимость LinkFirebase :

    pod 'GoogleMLKit/ImageLabelingCustom', '3.2.0'
    pod 'GoogleMLKit/LinkFirebase', '3.2.0'
    
  2. После установки или обновления модулей вашего проекта откройте проект Xcode, используя его .xcworkspace . ML Kit поддерживается в Xcode версии 13.2.1 или выше.

  3. Если вы хотите загрузить модель , убедитесь, что вы добавили Firebase в свой проект iOS , если вы еще этого не сделали. Это не требуется, когда вы связываете модель.

1. Загрузите модель

Настройте локальный источник модели

Чтобы связать модель с вашим приложением:

  1. Скопируйте файл модели (обычно оканчивающийся на .tflite или .lite ) в свой проект Xcode, не забыв при этом выбрать Copy bundle resources . Файл модели будет включен в комплект приложения и доступен для ML Kit.

  2. Создайте объект LocalModel , указав путь к файлу модели:

    Быстрый

    let localModel = LocalModel(path: localModelFilePath)

    Цель-C

    MLKLocalModel *localModel =
        [[MLKLocalModel alloc] initWithPath:localModelFilePath];

Настройте источник модели, размещенный в Firebase.

Чтобы использовать удаленно размещенную модель, создайте объект RemoteModel , указав имя, которое вы присвоили модели при ее публикации:

Быстрый

let firebaseModelSource = FirebaseModelSource(
    name: "your_remote_model") // The name you assigned in
                               // the Firebase console.
let remoteModel = CustomRemoteModel(remoteModelSource: firebaseModelSource)

Цель-C

MLKFirebaseModelSource *firebaseModelSource =
    [[MLKFirebaseModelSource alloc]
        initWithName:@"your_remote_model"]; // The name you assigned in
                                            // the Firebase console.
MLKCustomRemoteModel *remoteModel =
    [[MLKCustomRemoteModel alloc]
        initWithRemoteModelSource:firebaseModelSource];

Затем запустите задачу загрузки модели, указав условия, при которых вы хотите разрешить загрузку. Если модели нет на устройстве или доступна более новая версия модели, задача асинхронно загрузит модель из Firebase:

Быстрый

let downloadConditions = ModelDownloadConditions(
  allowsCellularAccess: true,
  allowsBackgroundDownloading: true
)

let downloadProgress = ModelManager.modelManager().download(
  remoteModel,
  conditions: downloadConditions
)

Цель-C

MLKModelDownloadConditions *downloadConditions =
    [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
                                         allowsBackgroundDownloading:YES];

NSProgress *downloadProgress =
    [[MLKModelManager modelManager] downloadModel:remoteModel
                                       conditions:downloadConditions];

Многие приложения запускают задачу загрузки в своем коде инициализации, но вы можете сделать это в любой момент, прежде чем вам понадобится использовать модель.

Настройте этикетировщик изображений

После настройки источников модели создайте объект ImageLabeler из одного из них.

Доступны следующие варианты:

Опции
confidenceThreshold

Минимальная оценка достоверности обнаруженных меток. Если не задано, будет использоваться любой порог классификатора, указанный в метаданных модели. Если модель не содержит метаданных или метаданные не определяют пороговое значение классификатора, будет использоваться пороговое значение по умолчанию, равное 0,0.

maxResultCount

Максимальное количество возвращаемых ярлыков. Если не установлено, будет использоваться значение по умолчанию 10.

Если у вас есть только локально связанная модель, просто создайте метку из вашего объекта LocalModel :

Быстрый

let options = CustomImageLabelerOptions(localModel: localModel)
options.confidenceThreshold = NSNumber(value: 0.0)
let imageLabeler = ImageLabeler.imageLabeler(options: options)

Цель-C

MLKCustomImageLabelerOptions *options =
    [[MLKCustomImageLabelerOptions alloc] initWithLocalModel:localModel];
options.confidenceThreshold = @(0.0);
MLKImageLabeler *imageLabeler =
    [MLKImageLabeler imageLabelerWithOptions:options];

Если у вас есть удаленно размещенная модель, вам нужно будет убедиться, что она была загружена, прежде чем запускать ее. Вы можете проверить статус задачи загрузки модели, используя метод isModelDownloaded(remoteModel:) .

Хотя вам нужно только подтвердить это перед запуском лейблера, если у вас есть как удаленно размещенная модель, так и локальная связанная модель, может иметь смысл выполнить эту проверку при создании экземпляра ImageLabeler : создайте лейлер из удаленной модели, если она были загружены, а из локальной модели в противном случае.

Быстрый

var options: CustomImageLabelerOptions!
if (ModelManager.modelManager().isModelDownloaded(remoteModel)) {
  options = CustomImageLabelerOptions(remoteModel: remoteModel)
} else {
  options = CustomImageLabelerOptions(localModel: localModel)
}
options.confidenceThreshold = NSNumber(value: 0.0)
let imageLabeler = ImageLabeler.imageLabeler(options: options)

Цель-C

MLKCustomImageLabelerOptions *options;
if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) {
  options = [[MLKCustomImageLabelerOptions alloc] initWithRemoteModel:remoteModel];
} else {
  options = [[MLKCustomImageLabelerOptions alloc] initWithLocalModel:localModel];
}
options.confidenceThreshold = @(0.0);
MLKImageLabeler *imageLabeler =
    [MLKImageLabeler imageLabelerWithOptions:options];

Если у вас есть только удаленно размещенная модель, вам следует отключить функции, связанные с моделью, например затенить или скрыть часть вашего пользовательского интерфейса, пока вы не подтвердите, что модель была загружена.

Вы можете получить статус загрузки модели, подключив наблюдателей к Центру уведомлений по умолчанию. Обязательно используйте слабую ссылку на self в блоке наблюдателя, поскольку загрузка может занять некоторое время, а исходный объект может быть освобожден к моменту завершения загрузки. Например:

Быстрый

NotificationCenter.default.addObserver(
    forName: .mlkitModelDownloadDidSucceed,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel,
        model.name == "your_remote_model"
        else { return }
    // The model was downloaded and is available on the device
}

NotificationCenter.default.addObserver(
    forName: .mlkitModelDownloadDidFail,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel
        else { return }
    let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
    // ...
}

Цель-C

__weak typeof(self) weakSelf = self;

[NSNotificationCenter.defaultCenter
    addObserverForName:MLKModelDownloadDidSucceedNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel];
              if ([model.name isEqualToString:@"your_remote_model"]) {
                // The model was downloaded and is available on the device
              }
            }];

[NSNotificationCenter.defaultCenter
    addObserverForName:MLKModelDownloadDidFailNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError];
            }];

2. Подготовьте входное изображение

Создайте объект VisionImage , используя UIImage или CMSampleBuffer .

Если вы используете UIImage , выполните следующие действия:

  • Создайте объект VisionImage с UIImage . Убедитесь, что вы правильно .orientation .

    Быстрый

    let image = VisionImage(image: UIImage)
    visionImage.orientation = image.imageOrientation

    Цель-C

    MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image];
    visionImage.orientation = image.imageOrientation;

Если вы используете CMSampleBuffer , выполните следующие действия:

  • Укажите ориентацию данных изображения, содержащихся в CMSampleBuffer .

    Чтобы получить ориентацию изображения:

    Быстрый

    func imageOrientation(
      deviceOrientation: UIDeviceOrientation,
      cameraPosition: AVCaptureDevice.Position
    ) -> UIImage.Orientation {
      switch deviceOrientation {
      case .portrait:
        return cameraPosition == .front ? .leftMirrored : .right
      case .landscapeLeft:
        return cameraPosition == .front ? .downMirrored : .up
      case .portraitUpsideDown:
        return cameraPosition == .front ? .rightMirrored : .left
      case .landscapeRight:
        return cameraPosition == .front ? .upMirrored : .down
      case .faceDown, .faceUp, .unknown:
        return .up
      }
    }
          

    Цель-C

    - (UIImageOrientation)
      imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                             cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored
                                                                : UIImageOrientationRight;
    
        case UIDeviceOrientationLandscapeLeft:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored
                                                                : UIImageOrientationUp;
        case UIDeviceOrientationPortraitUpsideDown:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored
                                                                : UIImageOrientationLeft;
        case UIDeviceOrientationLandscapeRight:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored
                                                                : UIImageOrientationDown;
        case UIDeviceOrientationUnknown:
        case UIDeviceOrientationFaceUp:
        case UIDeviceOrientationFaceDown:
          return UIImageOrientationUp;
      }
    }
          
  • Создайте объект VisionImage , используя объект CMSampleBuffer и ориентацию:

    Быстрый

    let image = VisionImage(buffer: sampleBuffer)
    image.orientation = imageOrientation(
      deviceOrientation: UIDevice.current.orientation,
      cameraPosition: cameraPosition)

    Цель-C

     MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer];
     image.orientation =
       [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                    cameraPosition:cameraPosition];

3. Запустите этикетировщик изображений

Чтобы пометить объекты на изображении, передайте объект image методу process() объекта ImageLabeler .

Асинхронно:

Быстрый

imageLabeler.process(image) { labels, error in
    guard error == nil, let labels = labels, !labels.isEmpty else {
        // Handle the error.
        return
    }
    // Show results.
}

Цель-C

[imageLabeler
    processImage:image
      completion:^(NSArray *_Nullable labels,
                   NSError *_Nullable error) {
        if (label.count == 0) {
            // Handle the error.
            return;
        }
        // Show results.
     }];

Синхронно:

Быстрый

var labels: [ImageLabel]
do {
    labels = try imageLabeler.results(in: image)
} catch let error {
    // Handle the error.
    return
}
// Show results.

Цель-C

NSError *error;
NSArray *labels =
    [imageLabeler resultsInImage:image error:&error];
// Show results or handle the error.

4. Получить информацию о помеченных объектах

Если операция маркировки изображения завершается успешно, она возвращает массив ImageLabel . Каждая ImageLabel представляет что-то, что было помечено на изображении. Вы можете получить текстовое описание каждой метки (если оно доступно в метаданных файла модели TensorFlow Lite), показатель достоверности и индекс. Например:

Быстрый

for label in labels {
  let labelText = label.text
  let confidence = label.confidence
  let index = label.index
}

Цель-C

for (MLKImageLabel *label in labels) {
  NSString *labelText = label.text;
  float confidence = label.confidence;
  NSInteger index = label.index;
}

Советы по улучшению производительности в реальном времени

Если вы хотите маркировать изображения в приложении реального времени, следуйте этим рекомендациям для достижения наилучшей частоты кадров:

  • Для обработки видеокадров используйте синхронный API results(in:) детектора. Вызовите этот метод из AVCaptureVideoDataOutputSampleBufferDelegate captureOutput(_, didOutput:from:) чтобы синхронно получить результаты из данного видеокадра. Сохраняйте AVCaptureVideoDataOutput alwaysDiscardsLateVideoFrames как true , чтобы ограничить вызовы детектора. Если новый видеокадр становится доступным во время работы детектора, он будет отброшен.
  • Если вы используете выходные данные детектора для наложения графики на входное изображение, сначала получите результат от ML Kit, а затем выполните визуализацию изображения и наложение за один шаг. Поступая таким образом, вы визуализируете на поверхность дисплея только один раз для каждого обработанного входного кадра. В качестве примера см. updatePreviewOverlayViewWithLastFrame в образце быстрого запуска ML Kit.