Memberi label pada gambar dengan model kustom di iOS

Anda dapat menggunakan ML Kit untuk mengenali entity dalam gambar dan melabelinya. API ini mendukung berbagai model klasifikasi gambar kustom. Lihat Model kustom dengan ML Kit untuk panduan tentang persyaratan kompatibilitas model, tempat untuk menemukan model terlatih, dan cara melatih model Anda sendiri.

Ada dua cara untuk mengintegrasikan model kustom. Anda dapat memaketkan model dengan memasukkannya ke dalam folder aset aplikasi, atau Anda dapat mendownloadnya secara dinamis dari Firebase. Tabel berikut membandingkan dua opsi tersebut.

Model Paket Model yang Dihosting
Model merupakan bagian dari APK aplikasi, yang akan menambah ukurannya. Model ini bukan bagian dari APK Anda. Domain dihosting dengan mengupload ke Firebase Machine Learning.
Model akan langsung tersedia, bahkan saat perangkat Android sedang offline Model didownload sesuai permintaan
Tidak memerlukan project Firebase Memerlukan project Firebase
Anda harus memublikasikan ulang aplikasi untuk memperbarui model Update model dapat dikirim tanpa memublikasikan ulang aplikasi
Tidak ada pengujian A/B bawaan Pengujian A/B yang mudah dengan Firebase Remote Config

Cobalah

Sebelum memulai

  1. Sertakan library ML Kit di Podfile Anda:

    Untuk memaketkan model dengan aplikasi Anda:

    pod 'GoogleMLKit/ImageLabelingCustom', '3.2.0'
    

    Untuk mendownload model dari Firebase secara dinamis, tambahkan dependensi LinkFirebase:

    pod 'GoogleMLKit/ImageLabelingCustom', '3.2.0'
    pod 'GoogleMLKit/LinkFirebase', '3.2.0'
    
  2. Setelah Anda menginstal atau mengupdate Pod project, buka project Xcode menggunakan .xcworkspace-nya. ML Kit didukung di Xcode versi 13.2.1 atau yang lebih tinggi.

  3. Jika ingin mendownload model, pastikan Anda menambahkan Firebase ke project iOS, jika belum melakukannya. Langkah ini tidak diperlukan jika Anda memaketkan model.

1. Memuat model

Mengonfigurasi sumber model lokal

Untuk memaketkan model dengan aplikasi:

  1. Salin file model (biasanya diakhiri dengan .tflite atau .lite) ke project Xcode dan berhati-hatilah saat memilih Copy bundle resources ketika melakukannya. File model akan disertakan dalam app bundle dan tersedia untuk ML Kit.

  2. Buat objek LocalModel, dengan menentukan jalur ke file model:

    Swift

    let localModel = LocalModel(path: localModelFilePath)

    Objective-C

    MLKLocalModel *localModel =
        [[MLKLocalModel alloc] initWithPath:localModelFilePath];

Mengonfigurasi sumber model yang dihosting Firebase

Untuk menggunakan model yang dihosting dari jarak jauh, buat objek RemoteModel, dengan menentukan nama yang diberikan kepada model saat dipublikasikan:

Swift

let firebaseModelSource = FirebaseModelSource(
    name: "your_remote_model") // The name you assigned in
                               // the Firebase console.
let remoteModel = CustomRemoteModel(remoteModelSource: firebaseModelSource)

Objective-C

MLKFirebaseModelSource *firebaseModelSource =
    [[MLKFirebaseModelSource alloc]
        initWithName:@"your_remote_model"]; // The name you assigned in
                                            // the Firebase console.
MLKCustomRemoteModel *remoteModel =
    [[MLKCustomRemoteModel alloc]
        initWithRemoteModelSource:firebaseModelSource];

Kemudian, mulai tugas download model dengan menentukan kondisi yang Anda inginkan untuk mengizinkan download. Jika model tidak ada di perangkat, atau jika versi model yang lebih baru tersedia, tugas ini akan mendownload model dari Firebase secara asinkron:

Swift

let downloadConditions = ModelDownloadConditions(
  allowsCellularAccess: true,
  allowsBackgroundDownloading: true
)

let downloadProgress = ModelManager.modelManager().download(
  remoteModel,
  conditions: downloadConditions
)

Objective-C

MLKModelDownloadConditions *downloadConditions =
    [[MLKModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
                                         allowsBackgroundDownloading:YES];

NSProgress *downloadProgress =
    [[MLKModelManager modelManager] downloadModel:remoteModel
                                       conditions:downloadConditions];

Banyak aplikasi memulai tugas download dalam kode inisialisasinya, tetapi Anda dapat melakukannya kapan saja sebelum menggunakan model.

Mengonfigurasi pemberi label gambar

Setelah mengonfigurasi sumber model, buat objek ImageLabeler dari salah satu objek tersebut.

Tersedia opsi-opsi berikut:

Opsi
confidenceThreshold

Skor keyakinan minimum label yang terdeteksi. Jika tidak disetel, nilai minimum pengklasifikasi apa pun yang ditentukan oleh metadata model akan digunakan. Jika model tidak berisi metadata apa pun atau metadata tidak menentukan batas pengklasifikasi, nilai minimum default 0,0 akan digunakan.

maxResultCount

Jumlah maksimum label untuk ditampilkan. Jika tidak disetel, nilai default 10 akan digunakan.

Jika hanya memiliki model yang dipaketkan secara lokal, cukup buat pemberi label dari objek LocalModel:

Swift

let options = CustomImageLabelerOptions(localModel: localModel)
options.confidenceThreshold = NSNumber(value: 0.0)
let imageLabeler = ImageLabeler.imageLabeler(options: options)

Objective-C

MLKCustomImageLabelerOptions *options =
    [[MLKCustomImageLabelerOptions alloc] initWithLocalModel:localModel];
options.confidenceThreshold = @(0.0);
MLKImageLabeler *imageLabeler =
    [MLKImageLabeler imageLabelerWithOptions:options];

Jika Anda memiliki model yang dihosting dari jarak jauh, Anda harus memeriksa apakah model tersebut sudah didownload sebelum menjalankannya. Anda dapat memeriksa status tugas download model menggunakan metode isModelDownloaded(remoteModel:) pengelola model.

Meskipun hanya perlu memastikan hal ini sebelum menjalankan pemberi label, jika Anda memiliki model yang dihosting dari jarak jauh dan model yang dipaketkan secara lokal, mungkin ada baiknya untuk melakukan pemeriksaan ini saat membuat instance ImageLabeler: buat pemberi label dari model jarak jauh jika model tersebut telah didownload, dan dari model lokal jika belum didownload.

Swift

var options: CustomImageLabelerOptions!
if (ModelManager.modelManager().isModelDownloaded(remoteModel)) {
  options = CustomImageLabelerOptions(remoteModel: remoteModel)
} else {
  options = CustomImageLabelerOptions(localModel: localModel)
}
options.confidenceThreshold = NSNumber(value: 0.0)
let imageLabeler = ImageLabeler.imageLabeler(options: options)

Objective-C

MLKCustomImageLabelerOptions *options;
if ([[MLKModelManager modelManager] isModelDownloaded:remoteModel]) {
  options = [[MLKCustomImageLabelerOptions alloc] initWithRemoteModel:remoteModel];
} else {
  options = [[MLKCustomImageLabelerOptions alloc] initWithLocalModel:localModel];
}
options.confidenceThreshold = @(0.0);
MLKImageLabeler *imageLabeler =
    [MLKImageLabeler imageLabelerWithOptions:options];

Jika Anda hanya memiliki model yang dihosting dari jarak jauh, Anda harus menonaktifkan fungsionalitas terkait model, misalnya membuat sebagian UI berwarna abu-abu atau menyembunyikannya, hingga Anda mengonfirmasi model tersebut telah didownload.

Anda dapat memperoleh status download model dengan menambahkan observer ke Pusat Notifikasi default. Pastikan untuk menggunakan referensi lemah ke self di blok observer, karena proses download memerlukan waktu beberapa saat, dan objek asalnya dapat dibebaskan pada saat download selesai. Contoh:

Swift

NotificationCenter.default.addObserver(
    forName: .mlkitModelDownloadDidSucceed,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel,
        model.name == "your_remote_model"
        else { return }
    // The model was downloaded and is available on the device
}

NotificationCenter.default.addObserver(
    forName: .mlkitModelDownloadDidFail,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel
        else { return }
    let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
    // ...
}

Objective-C

__weak typeof(self) weakSelf = self;

[NSNotificationCenter.defaultCenter
    addObserverForName:MLKModelDownloadDidSucceedNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              MLKRemoteModel *model = note.userInfo[MLKModelDownloadUserInfoKeyRemoteModel];
              if ([model.name isEqualToString:@"your_remote_model"]) {
                // The model was downloaded and is available on the device
              }
            }];

[NSNotificationCenter.defaultCenter
    addObserverForName:MLKModelDownloadDidFailNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              NSError *error = note.userInfo[MLKModelDownloadUserInfoKeyError];
            }];

2. Persiapkan gambar input

Buat objek VisionImage menggunakan UIImage atau CMSampleBuffer.

Jika Anda menggunakan UIImage, ikuti langkah-langkah berikut:

  • Buat objek VisionImage dengan UIImage. Pastikan untuk menentukan .orientation yang benar.

    Swift

    let image = VisionImage(image: UIImage)
    visionImage.orientation = image.imageOrientation

    Objective-C

    MLKVisionImage *visionImage = [[MLKVisionImage alloc] initWithImage:image];
    visionImage.orientation = image.imageOrientation;

Jika Anda menggunakan CMSampleBuffer, ikuti langkah-langkah berikut:

  • Tentukan orientasi data gambar yang terdapat dalam CMSampleBuffer.

    Untuk mendapatkan orientasi gambar:

    Swift

    func imageOrientation(
      deviceOrientation: UIDeviceOrientation,
      cameraPosition: AVCaptureDevice.Position
    ) -> UIImage.Orientation {
      switch deviceOrientation {
      case .portrait:
        return cameraPosition == .front ? .leftMirrored : .right
      case .landscapeLeft:
        return cameraPosition == .front ? .downMirrored : .up
      case .portraitUpsideDown:
        return cameraPosition == .front ? .rightMirrored : .left
      case .landscapeRight:
        return cameraPosition == .front ? .upMirrored : .down
      case .faceDown, .faceUp, .unknown:
        return .up
      }
    }
          

    Objective-C

    - (UIImageOrientation)
      imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                             cameraPosition:(AVCaptureDevicePosition)cameraPosition {
      switch (deviceOrientation) {
        case UIDeviceOrientationPortrait:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationLeftMirrored
                                                                : UIImageOrientationRight;
    
        case UIDeviceOrientationLandscapeLeft:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationDownMirrored
                                                                : UIImageOrientationUp;
        case UIDeviceOrientationPortraitUpsideDown:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationRightMirrored
                                                                : UIImageOrientationLeft;
        case UIDeviceOrientationLandscapeRight:
          return cameraPosition == AVCaptureDevicePositionFront ? UIImageOrientationUpMirrored
                                                                : UIImageOrientationDown;
        case UIDeviceOrientationUnknown:
        case UIDeviceOrientationFaceUp:
        case UIDeviceOrientationFaceDown:
          return UIImageOrientationUp;
      }
    }
          
  • Buat objek VisionImage menggunakan objek dan orientasi CMSampleBuffer:

    Swift

    let image = VisionImage(buffer: sampleBuffer)
    image.orientation = imageOrientation(
      deviceOrientation: UIDevice.current.orientation,
      cameraPosition: cameraPosition)

    Objective-C

     MLKVisionImage *image = [[MLKVisionImage alloc] initWithBuffer:sampleBuffer];
     image.orientation =
       [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                    cameraPosition:cameraPosition];

3. Menjalankan pemberi label gambar

Untuk memberi label pada objek dalam gambar, teruskan objek image ke metode process() ImageLabeler.

Secara asinkron:

Swift

imageLabeler.process(image) { labels, error in
    guard error == nil, let labels = labels, !labels.isEmpty else {
        // Handle the error.
        return
    }
    // Show results.
}

Objective-C

[imageLabeler
    processImage:image
      completion:^(NSArray *_Nullable labels,
                   NSError *_Nullable error) {
        if (label.count == 0) {
            // Handle the error.
            return;
        }
        // Show results.
     }];

Secara sinkron:

Swift

var labels: [ImageLabel]
do {
    labels = try imageLabeler.results(in: image)
} catch let error {
    // Handle the error.
    return
}
// Show results.

Objective-C

NSError *error;
NSArray *labels =
    [imageLabeler resultsInImage:image error:&error];
// Show results or handle the error.

4. Mendapatkan informasi tentang entitas berlabel

Jika operasi pelabelan gambar berhasil, array ImageLabel akan ditampilkan. Setiap ImageLabel mewakili sesuatu yang berlabel dalam gambar. Anda dapat memperoleh deskripsi teks setiap label (jika tersedia dalam metadata file model TensorFlow Lite), skor keyakinan, dan indeks. Contoh:

Swift

for label in labels {
  let labelText = label.text
  let confidence = label.confidence
  let index = label.index
}

Objective-C

for (MLKImageLabel *label in labels) {
  NSString *labelText = label.text;
  float confidence = label.confidence;
  NSInteger index = label.index;
}

Tips untuk meningkatkan performa real-time

Jika ingin memberikan label pada gambar dalam aplikasi real-time, ikuti pedoman ini untuk mencapai kecepatan frame terbaik:

  • Untuk memproses frame video, gunakan API sinkron results(in:) dari detektor. Panggil metode ini dari fungsi captureOutput(_, didOutput:from:) AVCaptureVideoDataOutputSampleBufferDelegate untuk mendapatkan hasil secara sinkron dari frame video yang diberikan. Simpan alwaysDiscardsLateVideoFrames AVCaptureVideoDataOutput sebagai true untuk membatasi panggilan ke detektor. Jika frame video baru tersedia saat detektor sedang berjalan, frame tersebut akan dihapus.
  • Jika Anda menggunakan output detektor untuk menempatkan grafis pada gambar input, pertama-tama dapatkan hasilnya dari ML Kit, lalu render gambar dan tempatkan grafis dalam satu langkah. Dengan demikian, Anda hanya merender ke permukaan tampilan sekali untuk setiap frame input yang diproses. Lihat updatePreviewOverlayViewWithLastFrame dalam contoh panduan memulai ML Kit untuk mengetahui contohnya.