Помечайте изображения с помощью ML Kit на Android

Вы можете использовать ML Kit для маркировки объектов, распознанных на изображении. Модель по умолчанию, предоставляемая ML Kit, поддерживает более 400 различных меток.

Особенность Разделенный В комплекте
Выполнение Модель динамически загружается через Google Play Services. Модель статически связана с вашей во время сборки.
Размер приложения Увеличение размера примерно на 200 КБ. Увеличение размера примерно на 5,7 МБ.
Время инициализации Возможно, придется подождать, пока модель загрузится перед первым использованием. Модель доступна немедленно

Попробуйте это

Прежде чем начать

  1. В файле build.gradle на уровне проекта обязательно включите репозиторий Maven от Google в разделы buildscript и allprojects .

  2. Добавьте зависимости для библиотек Android ML Kit в файл gradle уровня приложения вашего модуля, который обычно называется app/build.gradle . Выберите одну из следующих зависимостей в зависимости от ваших потребностей:

    Для объединения модели с вашим приложением:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:image-labeling:17.0.9'
    }
    

    Для использования модели в Google Play Services:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-image-labeling:16.0.8'
    }
    
  3. Если вы решили использовать модель в Google Play Services , вы можете настроить свое приложение на автоматическую загрузку модели на устройство после установки приложения из Play Store. Для этого добавьте следующее объявление в файл AndroidManifest.xml вашего приложения:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="ica" >
          <!-- To use multiple models: android:value="ica,model2,model3" -->
    </application>
    

    Вы также можете явно проверить доступность модели и запросить загрузку через API ModuleInstallClient сервисов Google Play.

    Если вы не включите загрузку модели во время установки или не запросите явную загрузку, модель будет загружена при первом запуске маркировщика. Запросы, которые вы сделаете до завершения загрузки, не дадут никаких результатов.

Теперь вы готовы маркировать изображения.

1. Подготовьте входное изображение.

Создайте объект InputImage из вашего изображения. Ярлык изображения работает быстрее всего, когда вы используете Bitmap или, если вы используете API camera2, YUV_420_888 media.Image , которые рекомендуются, когда это возможно.

Вы можете создать объект InputImage из разных источников, каждый из которых описан ниже.

Использование media.Image

Чтобы создать объект InputImage из объекта media.Image , например, при захвате изображения с камеры устройства, передайте объект media.Image и поворот изображения в InputImage.fromMediaImage() .

Если вы используете библиотеку CameraX , классы OnImageCapturedListener и ImageAnalysis.Analyzer вычисляют значение поворота автоматически.

Котлин

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Ява

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Если вы не используете библиотеку камеры, которая выдает угол поворота изображения, вы можете рассчитать его на основе угла поворота устройства и ориентации датчика камеры на устройстве:

Котлин

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Ява

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Затем передайте объект media.Image и значение угла поворота в InputImage.fromMediaImage() :

Котлин

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Использование URI файла

Чтобы создать объект InputImage из URI файла, передайте контекст приложения и URI файла в InputImage.fromFilePath() . Это полезно, когда вы используете намерение ACTION_GET_CONTENT , чтобы предложить пользователю выбрать изображение из своего приложения галереи.

Котлин

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

Использование ByteBuffer или ByteArray

Чтобы создать объект InputImage из ByteBuffer или ByteArray , сначала вычислите степень поворота изображения, как описано ранее для ввода media.Image . Затем создайте объект InputImage с буфером или массивом, вместе с высотой изображения, шириной, форматом кодировки цвета и степенью поворота:

Котлин

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Ява

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Использование Bitmap

Чтобы создать объект InputImage из объекта Bitmap , сделайте следующее объявление:

Котлин

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Изображение представлено объектом Bitmap вместе с градусами поворота.

2. Настройте и запустите маркировщик изображений.

Чтобы маркировать объекты на изображении, передайте объект InputImage методу process ImageLabeler .

  1. Сначала получим экземпляр ImageLabeler .

    Если вы хотите использовать встроенный в устройство маркировщик изображений, сделайте следующее объявление:

Котлин

// To use default options:
val labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS)

// Or, to set the minimum confidence required:
// val options = ImageLabelerOptions.Builder()
//     .setConfidenceThreshold(0.7f)
//     .build()
// val labeler = ImageLabeling.getClient(options)

Ява

// To use default options:
ImageLabeler labeler = ImageLabeling.getClient(ImageLabelerOptions.DEFAULT_OPTIONS);

// Or, to set the minimum confidence required:
// ImageLabelerOptions options =
//     new ImageLabelerOptions.Builder()
//         .setConfidenceThreshold(0.7f)
//         .build();
// ImageLabeler labeler = ImageLabeling.getClient(options);
  1. Затем передайте изображение методу process() :

Котлин

labeler.process(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Ява

labeler.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
            @Override
            public void onSuccess(List<ImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

3. Получить информацию о маркированных объектах

Если операция маркировки изображения прошла успешно, список объектов ImageLabel передается прослушивателю успеха. Каждый объект ImageLabel представляет собой что-то, что было помечено на изображении. Базовая модель поддерживает более 400 различных меток . Вы можете получить текстовое описание каждой метки, индекс среди всех меток, поддерживаемых моделью, и оценку достоверности совпадения. Например:

Котлин

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
    val index = label.index
}

Ява

for (ImageLabel label : labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
    int index = label.getIndex();
}

Советы по улучшению производительности в реальном времени

Если вы хотите маркировать изображения в приложении реального времени, следуйте этим рекомендациям, чтобы добиться наилучшей частоты кадров:

  • Если вы используете API Camera или camera2 , ограничивайте вызовы маркировщика изображений. Если новый видеокадр становится доступным во время работы маркировщика изображений, удалите кадр. См. класс VisionProcessorBase в примере приложения быстрого запуска для примера.
  • Если вы используете API CameraX , убедитесь, что стратегия обратного давления установлена ​​на значение по умолчанию ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST . Это гарантирует, что для анализа будет доставлено только одно изображение за раз. Если при занятости анализатора будет создано больше изображений, они будут автоматически удалены и не будут поставлены в очередь на доставку. После того, как анализируемое изображение будет закрыто вызовом ImageProxy.close(), будет доставлено следующее последнее изображение.
  • Если вы используете вывод маркировщика изображений для наложения графики на входное изображение, сначала получите результат из ML Kit, затем визуализируйте изображение и наложение за один шаг. Это визуализирует поверхность отображения только один раз для каждого входного кадра. См. классы CameraSourcePreview и GraphicOverlay в примере приложения быстрого запуска для примера.
  • Если вы используете API Camera2, захватывайте изображения в формате ImageFormat.YUV_420_888 . Если вы используете старый API Camera, захватывайте изображения в формате ImageFormat.NV21 .