使用机器学习套件扫描条形码 (Android)

您可以使用机器学习套件识别和解码条形码。

<ph type="x-smartling-placeholder">
功能不分类显示捆绑
实现模型通过 Google Play 服务动态下载。模型在构建时静态关联到您的应用。
应用大小大小增加约 200 KB。大小增加约 2.4 MB。
初始化时间可能需要等到模型下载完毕后才能首次使用。模型立即可用。

试试看

准备工作

<ph type="x-smartling-placeholder">
  1. 请务必在您的项目级 build.gradle 文件中添加 Google 的 buildscriptallprojects 部分中的 Maven 制品库。

  2. 将 Android 版机器学习套件库的依赖项添加到模块的 应用级 Gradle 文件,通常为 app/build.gradle。请选择以下其中一项: 以下依赖项:

    如需将模型与应用捆绑,请执行以下操作

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:barcode-scanning:17.3.0'
    }
    

    对于在 Google Play 服务中使用模型的情况

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.3.1'
    }
    
  3. 如果您选择在 Google Play 服务中使用该模型,则可以配置 在应用下载完毕后,自动将模型下载到设备上 从 Play 商店安装的应用。为此,请将以下声明添加到 应用的 AndroidManifest.xml 文件:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="barcode" >
          <!-- To use multiple models: android:value="barcode,model2,model3" -->
    </application>
    

    您还可以明确检查模型可用性,并请求通过 Google Play 服务 ModuleInstallClient API

    如果您不启用安装时模型下载或请求明确下载, 则模型会在您首次运行扫描器时下载。您提出的请求 在下载完成之前未产生任何结果。

输入图片准则

  • 为了使机器学习套件准确读取条形码,输入图片必须包含 用足够像素数据表示的条形码。

    具体的像素数据要求取决于 因为很多条形码中的内容都与条形码之间 支持可变大小的载荷一般来说,最小的 条形码的单元宽度应至少为 2 像素,并且 二维代码,高 2 像素。

    例如,EAN-13 条形码由条形和空格组成,分别为 1、 宽度为 2、3 或 4 个单位,因此理想情况下,EAN-13 条形码图片应具有 宽度至少为 2、4、6 和 8 像素的空间。因为有一个 EAN-13 条形码总共为 95 个单位,条形码应至少为 190 像素宽。

    更密集的格式(如 PDF417)需要更大的像素尺寸才能 机器学习套件可靠地读取这些数据。例如,一个 PDF417 代码最多可包含 34 个 17 个单位的宽“单词”最好是至少 宽度为 1156 像素。

  • 图片聚焦不良会影响扫描准确性。如果您的应用没有 可以要求用户重新拍摄图片。

  • 对于典型应用,建议为 例如 1280x720 或 1920x1080, 距离摄像头较远的屏幕可扫描。

    不过,在对延迟至关重要的应用中,您可以 以较低分辨率捕获图片,但要求 条形码构成了输入图片的大部分。另请参阅 提高实时性能的相关提示

1. 配置条形码扫描器

如果您知道要读取哪些格式的条形码,就可以提高 方法是将条形码检测器配置为仅检测这些格式。

例如,要仅检测 Aztec 码和 QR 码,请构建 BarcodeScannerOptions 对象,如以下示例所示:

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build();

支持以下格式:

  • 代码 128 (FORMAT_CODE_128)
  • 代码 39 (FORMAT_CODE_39)
  • 代码 93 (FORMAT_CODE_93)
  • Codabar(FORMAT_CODABAR
  • EAN-13(FORMAT_EAN_13
  • EAN-8(FORMAT_EAN_8
  • ITF (FORMAT_ITF)
  • UPC-A (FORMAT_UPC_A)
  • UPC-E (FORMAT_UPC_E)
  • 二维码 (FORMAT_QR_CODE)
  • PDF417(FORMAT_PDF417
  • 阿兹特克语 (FORMAT_AZTEC)
  • 数据矩阵 (FORMAT_DATA_MATRIX)

从捆绑模型 17.1.0 和未捆绑模型 18.2.0 开始,您还可以调用 enableAllPotentialBarcodes() 会返回所有可能的条形码,即使 无法解码。这可用于协助进一步检测,例如 放大后,可以更清晰地看到返回的 中的条形码 边界框任务

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build();

Further on, starting from bundled library 17.2.0 and unbundled library 18.3.0, a new feature called auto-zoom has been introduced to further enhance the barcode scanning experience. With this feature enabled, the app is notified when all barcodes within the view are too distant for decoding. As a result, the app can effortlessly adjust the camera's zoom ratio to the recommended setting provided by the library, ensuring optimal focus and readability. This feature will significantly enhance the accuracy and success rate of barcode scanning, making it easier for apps to capture information precisely.

To enable auto-zooming and customize the experience, you can utilize the setZoomSuggestionOptions() method along with your own ZoomCallback handler and desired maximum zoom ratio, as demonstrated in the code below.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build();

zoomCallback is required to be provided to handle whenever the library suggests a zoom should be performed and this callback will always be called on the main thread.

The following code snippet shows an example of defining a simple callback.

Kotlin

fun setZoom(ZoomRatio: Float): Boolean {
    if (camera.isClosed()) return false
    camera.getCameraControl().setZoomRatio(zoomRatio)
    return true
}

Java

boolean setZoom(float zoomRatio) {
    if (camera.isClosed()) {
        return false;
    }
    camera.getCameraControl().setZoomRatio(zoomRatio);
    return true;
}

maxSupportedZoomRatio is related to the camera hardware, and different camera libraries have different ways to fetch it (see the javadoc of the setter method). In case this is not provided, an unbounded zoom ratio might be produced by the library which might not be supported. Refer to the setMaxSupportedZoomRatio() method introduction to see how to get the max supported zoom ratio with different Camera libraries.

When auto-zooming is enabled and no barcodes are successfully decoded within the view, BarcodeScanner triggers your zoomCallback with the requested zoomRatio. If the callback correctly adjusts the camera to this zoomRatio, it is highly probable that the most centered potential barcode will be decoded and returned.

A barcode may remain undecodable even after a successful zoom-in. In such cases, BarcodeScanner may either invoke the callback for another round of zoom-in until the maxSupportedZoomRatio is reached, or provide an empty list (or a list containing potential barcodes that were not decoded, if enableAllPotentialBarcodes() was called) to the OnSuccessListener (which will be defined in step 4. Process the image).

2. Prepare the input image

To recognize barcodes in an image, create an InputImage object from either a Bitmap, media.Image, ByteBuffer, byte array, or a file on the device. Then, pass the InputImage object to the BarcodeScanner's process method.

You can create an InputImage object from different sources, each is explained below.

Using a media.Image

To create an InputImage object from a media.Image object, such as when you capture an image from a device's camera, pass the media.Image object and the image's rotation to InputImage.fromMediaImage().

If you use the CameraX library, the OnImageCapturedListener and ImageAnalysis.Analyzer classes calculate the rotation value for you.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

如果您不使用可提供图片旋转角度的相机库, 可以根据设备的旋转角度和镜头方向来计算 设备传感器:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

然后,传递 media.Image 对象和 将旋转角度值设为 InputImage.fromMediaImage()

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

使用文件 URI

如需创建 InputImage,请执行以下操作: 对象时,请将应用上下文和文件 URI 传递给 InputImage.fromFilePath()。在需要满足特定条件时 使用 ACTION_GET_CONTENT intent 提示用户进行选择 从图库应用中获取图片

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

使用 ByteBufferByteArray

如需创建 InputImage,请执行以下操作: 对象ByteBufferByteArray时,首先计算图像 旋转角度。media.Image 然后,创建带有缓冲区或数组的 InputImage 对象以及图片的 高度、宽度、颜色编码格式和旋转角度:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

使用 Bitmap

如需创建 InputImage,请执行以下操作: 对象时,请进行以下声明:Bitmap

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

图片由 Bitmap 对象和旋转角度表示。

3. 获取 BarcodeScanner 的实例

Kotlin

val scanner = BarcodeScanning.getClient()
// Or, to specify the formats to recognize:
// val scanner = BarcodeScanning.getClient(options)

Java

BarcodeScanner scanner = BarcodeScanning.getClient();
// Or, to specify the formats to recognize:
// BarcodeScanner scanner = BarcodeScanning.getClient(options);

4. 处理图片

将图片传递给 process 方法:

Kotlin

val result = scanner.process(image)
        .addOnSuccessListener { barcodes ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener {
            // Task failed with an exception
            // ...
        }

Java

Task<List<Barcode>> result = scanner.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() {
            @Override
            public void onSuccess(List<Barcode> barcodes) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });
<ph type="x-smartling-placeholder">

5. 从条形码中获取信息

如果条形码识别操作成功,系统会显示 Barcode 列表, 对象传递给成功监听器。每个 Barcode 对象代表 在图片中检测到的条形码。对于每个条形码,您可以 输入图像中的边界坐标以及由 条形码。此外,如果条形码扫描器能够确定数据的类型, 您可以获取一个包含已解析数据的对象。

例如:

Kotlin

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        Barcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        Barcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

Java

for (Barcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case Barcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case Barcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

提高实时性能的相关提示

如果要在实时应用中扫描条形码,请按以下说明操作 实现最佳帧速率的准则:

  • 请勿以相机的原始分辨率捕获输入内容。在某些设备上 以原始分辨率捕获输入会产生极大的(超过 10 而这导致非常糟糕的延迟时间,对 准确率。正确做法是,仅从相机中请求所需的尺寸 通常不超过 200 万像素。

    如果扫描速度很重要,您可以进一步降低图片拍摄速度 分辨率。不过,请注意最小条形码尺寸要求 。

    如果您要尝试从一系列流式视频中识别条形码 识别器在不同视频帧之间生成不同的结果 帧。您应该等到收到同一系列的 值以确保您会返回良好的结果。

    ITF 和 CODE-39 不支持校验和数字。

  • 如果您使用 Cameracamera2 API、 限制对检测器的调用。如果新视频 当检测器运行时有可用的帧时,请丢弃该帧。请参阅 <ph type="x-smartling-placeholder"></ph> VisionProcessorBase 类。
  • 如果您使用 CameraX API, 确保将 backpressure 策略设置为默认值 ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST。 这可保证一次只传送一张图片进行分析。如果有更多图片 在分析器繁忙时生成,它们会被自动丢弃,不会排队等待 。通过调用 ImageProxy.close(),将传递下一张图片。
  • 如果您使用检测器的输出在图像上叠加显示 输入图片,首先从机器学习套件获取结果, 和叠加层。这会渲染到 每个输入帧只执行一次。请参阅 <ph type="x-smartling-placeholder"></ph> CameraSourcePreview GraphicOverlay 类。
  • 如果您使用 Camera2 API,请使用 ImageFormat.YUV_420_888 格式。如果您使用的是旧版 Camera API,请使用 ImageFormat.NV21 格式。