Gere respostas inteligentes com o Kit de ML no Android

O kit de ML pode gerar respostas curtas a mensagens usando um modelo no dispositivo.

Para gerar respostas inteligentes, você transmite para o Kit de ML um registro de mensagens recentes em uma conversa. Se o kit de ML determinar que a conversa está em inglês e que ela não tem um assunto potencialmente confidencial, o kit gerará até três respostas, que você pode sugerir ao usuário.

AgrupadasDesagrupado
Nome da bibliotecacom.google.mlkit:smart-replycom.google.android.gms:play-services-mlkit-smart-reply
ImplementaçãoO modelo é estaticamente vinculado ao app no momento da criação.O download do modelo é feito dinamicamente pelo Google Play Services.
Impacto do tamanho do appAumento de cerca de 5,7 MB.Aumento de cerca de 200 KB.
Tempo de inicializaçãoO modelo estará disponível imediatamente.Talvez seja necessário aguardar o download do modelo para usá-lo pela primeira vez.

Testar

Antes de começar

  1. No arquivo build.gradle no nível do projeto, inclua o repositório Maven do Google nas seções buildscript e allprojects.

  2. Adicione as dependências das bibliotecas Android do Kit de ML ao arquivo Gradle do módulo no nível do app, que geralmente é app/build.gradle. Escolha uma das seguintes dependências com base nas suas necessidades:

    • Para agrupar o modelo e o aplicativo:
    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:smart-reply:17.0.2'
    }
    
    • Para usar o modelo no Google Play Services:
    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-smart-reply:16.0.0-beta1'
    }
    

    Se você optar por usar o modelo no Google Play Services, será possível configurar o app para fazer o download automaticamente no dispositivo após a instalação pelo app. Adicione a seguinte declaração ao arquivo AndroidManifest.xml do seu app:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="smart_reply" >
          <!-- To use multiple models: android:value="smart_reply,model2,model3" -->
    </application>
    

    Também é possível verificar explicitamente a disponibilidade do modelo e solicitar o download por meio da API ModuleInstallClient do Google Play Services.

    Se você não ativar os downloads do modelo de tempo de instalação ou solicitar o download explícito, o modelo será transferido na primeira vez que você executar o gerador de respostas inteligentes. As solicitações feitas antes da conclusão do download não produzem resultados.

    1. Criar um objeto de histórico de conversas

    Para gerar respostas inteligentes, você transmite para o Kit de ML uma List de objetos TextMessage em ordem cronológica, com o carimbo de data/hora mais antigo primeiro.

    Sempre que o usuário enviar uma mensagem, adicione a mensagem e o carimbo de data/hora dela ao histórico de conversas:

    Kotlin

    conversation.add(TextMessage.createForLocalUser(
            "heading out now", System.currentTimeMillis()))

    Java

    conversation.add(TextMessage.createForLocalUser(
            "heading out now", System.currentTimeMillis()));

    Sempre que o usuário receber uma mensagem, adicione a mensagem, o carimbo de data/hora e o código do usuário do remetente ao histórico de conversas. O código do usuário pode ser qualquer string que identifique de maneira exclusiva o remetente na conversa. O código do usuário não precisa corresponder a nenhum dado do usuário e não precisa ser consistente entre conversas ou invocações do gerador de respostas inteligentes.

    Kotlin

    conversation.add(TextMessage.createForRemoteUser(
            "Are you coming back soon?", System.currentTimeMillis(), userId))

    Java

    conversation.add(TextMessage.createForRemoteUser(
            "Are you coming back soon?", System.currentTimeMillis(), userId));

    Um objeto de histórico de conversas é semelhante ao exemplo a seguir:

    Carimbo de data/hora User-ID Usuário local A mensagem
    Quinta-feira, 21 de fevereiro, às 13:13:39 PST 2019 verdadeiro Você está a caminho?
    Quinta-feira, 21 de fevereiro, às 13:15:03 PST 2019 AMIGO falso Você está atrasado, desculpe!

    O Kit de ML sugere respostas à última mensagem em um histórico de conversas. A última mensagem precisa ser de um usuário não local. No exemplo acima, a última mensagem da conversa é do usuário não local FRIEND0. Quando você usa este registro do kit de aprendizado de máquina, ele sugere respostas para a mensagem do FRIENDO: "Está atrasado, desculpe!"

    2. Receber respostas de mensagens

    Para gerar respostas inteligentes a uma mensagem, receba uma instância de SmartReplyGenerator e transmita o histórico de conversas para o método suggestReplies():

    Kotlin

    val smartReplyGenerator = SmartReply.getClient()
    smartReply.suggestReplies(conversation)
            .addOnSuccessListener { result ->
                if (result.getStatus() == SmartReplySuggestionResult.STATUS_NOT_SUPPORTED_LANGUAGE) {
                    // The conversation's language isn't supported, so
                    // the result doesn't contain any suggestions.
                } else if (result.getStatus() == SmartReplySuggestionResult.STATUS_SUCCESS) {
                    // Task completed successfully
                    // ...
                }
            }
            .addOnFailureListener {
                // Task failed with an exception
                // ...
            }

    Java

    SmartReplyGenerator smartReply = SmartReply.getClient();
    smartReply.suggestReplies(conversation)
            .addOnSuccessListener(new OnSuccessListener() {
                @Override
                public void onSuccess(SmartReplySuggestionResult result) {
                    if (result.getStatus() == SmartReplySuggestionResult.STATUS_NOT_SUPPORTED_LANGUAGE) {
                        // The conversation's language isn't supported, so
                        // the result doesn't contain any suggestions.
                    } else if (result.getStatus() == SmartReplySuggestionResult.STATUS_SUCCESS) {
                        // Task completed successfully
                        // ...
                    }
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Se a operação for bem-sucedida, um objeto SmartReplySuggestionResult será transmitido para o gerenciador de sucesso. Esse objeto contém uma lista de até três respostas sugeridas, que você pode apresentar ao usuário:

    Kotlin

    for (suggestion in result.suggestions) {
        val replyText = suggestion.text
    }

    Java

    for (SmartReplySuggestion suggestion : result.getSuggestions()) {
        String replyText = suggestion.getText();
    }

    Observe que o Kit de ML pode não retornar resultados se o modelo não estiver confiante na relevância das respostas sugeridas, se a conversa de entrada não estiver em inglês ou se o modelo detectar um assunto confidencial.