Bias-Varianz-Dilemma, Wikipedia.
Brooks, S., Gelman, A., General Methods for Monitoring Convergence of Iterative Simulations, 1998.
Chen, A., Chan, D., Koehler, J., Wang, Y., Sun, Y., Jin, Y., Perry, M., Google, Inc. Bias Correction For Paid Search In Media Mix Modeling, 2018.
Clark, Michael, Bayesian Basics: A conceptual Introduction with application in R and Stan, University of Michigan, 11. September 2015.
Gelman, A., Rubin, D., Inference from Iterative Simulation Using Multiple Sequences, 1992.
Hernán, M. A., Robins, J. M., Causal Inference: What If, Boca Raton: Chapman & Hall/CRC, 2020.
Jin, Y., Wang, Y., Sun, Y., Chan, D., Koehler, J., Google Inc. Bayesian Methods for Media Mix Modeling with Carryover and Shape Effects, 2017.
Ng, E., Wang, Z. und Dai, A. Bayesian Time Varying Coefficient Model with Applications to Marketing Mix Modeling, 2021.
Pearl, Judea. „Causality“. Cambridge University Press. (14. September 2009) ISBN 9781139643986.
Spline (Mathematik), Wikipedia.
Sun, Y., Wang, Y., Jin, Y., Chan, D., Koehler, J., Google Inc. Geo-level Bayesian Hierarchical Media Mix Modeling, 2017.
Wang, Y., Jin, Y., Sun, Y., Chan, D., Koehler, J., Google Inc. A Hierarchical Bayesian Approach to Improve Media Mix Models Using Category Data, 2017.
Zhang, Y., Wurm, M., Li, E., Wakim, A., Kelly, J., Price, B., Liu, Y., Google Inc. Media Mix Model Calibration With Bayesian Priors, 2023.
Zhang, Y., Wurm, M., Wakim, A., Li, E., Liu, Y., Google Inc. Bayesian Hierarchical Media Mix Model Incorporating Reach and Frequency Data, 2023.
Verweise
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-02-19 (UTC).
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Benötigte Informationen nicht gefunden","missingTheInformationINeed","thumb-down"],["Zu umständlich/zu viele Schritte","tooComplicatedTooManySteps","thumb-down"],["Nicht mehr aktuell","outOfDate","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Problem mit Beispielen/Code","samplesCodeIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2025-02-19 (UTC)."],[[["This compilation of resources focuses on Bayesian methods and their applications, particularly in media mix modeling (MMM) for marketing analysis."],["Several resources explore the use of Bayesian hierarchical models, incorporating factors like carryover effects, shape effects, geographic variations, and category data to enhance MMM accuracy."],["The list also includes foundational materials on Bayesian statistics, causal inference, and convergence diagnostics for iterative simulations, providing a comprehensive understanding of the underlying concepts."],["Resources from Google researchers showcase cutting-edge advancements in MMM, including bias correction for paid search, the integration of reach and frequency data, and the utilization of Bayesian priors for model calibration."],["This collection serves as a valuable guide for researchers and practitioners seeking to leverage Bayesian techniques for advanced marketing measurement and decision-making."]]],["The documents cover Bayesian methods and their application in media mix modeling (MMM). Key topics include: bias-variance tradeoff; convergence monitoring for iterative simulations; causal inference; Bayesian hierarchical modeling to improve MMM with category data, reach, frequency, carryover, and shape effects; bias correction for paid search in MMM; and calibration of MMM using Bayesian priors. Splines and TensorFlow Probability are also mentioned, with general bayesian concepts. The work was carried out by researchers in different academic institutions or at google.\n"]]