El Kit de AA puede generar respuestas cortas a los mensajes mediante un modelo en el dispositivo.
Para generar respuestas inteligentes, debes pasar al Kit de AA un registro de los mensajes recientes de una conversación. Si el Kit de AA determina que la conversación está en inglés y que no contiene cuestiones potencialmente sensibles, genera hasta tres respuestas que puedes sugerir al usuario.
Red de Búsqueda y Red de Display | Sin agrupar | |
---|---|---|
Nombre de la biblioteca | com.google.mlkit:smart-reply | com.google.android.gms:play-services-mlkit-smart-reply |
Implementación | El modelo se vincula de forma estática con tu app en el momento de la compilación. | El modelo se descarga de forma dinámica a través de los Servicios de Google Play. |
Impacto en el tamaño de la app | Aumento de tamaño de unos 5.7 MB. | Alrededor de 200 KB. |
Hora de inicialización | El modelo está disponible de inmediato. | Es posible que debas esperar a que se descargue el modelo antes de usarlo por primera vez. |
Probar
- Prueba la app de ejemplo para ver un ejemplo de uso de esta API.
Antes de comenzar
En tu archivo
build.gradle
de nivel de proyecto, asegúrate de incluir el repositorio Maven de Google en las seccionesbuildscript
yallprojects
.Agrega las dependencias para las bibliotecas de Android del Kit de AA al archivo Gradle a nivel de la app de tu módulo, que suele ser
app/build.gradle
. Elige una de las siguientes dependencias según tus necesidades:- Para empaquetar el modelo con tu app, haz lo siguiente:
dependencies { // ... // Use this dependency to bundle the model with your app implementation 'com.google.mlkit:smart-reply:17.0.2' }
- Para usar el modelo en los Servicios de Google Play, haz lo siguiente:
dependencies { // ... // Use this dependency to use the dynamically downloaded model in Google Play Services implementation 'com.google.android.gms:play-services-mlkit-smart-reply:16.0.0-beta1' }
Si eliges usar el modelo en los Servicios de Google Play, puedes configurar tu app para que, luego, se instale desde Play Store y se descargue automáticamente al dispositivo. Agrega la siguiente declaración al archivo
AndroidManifest.xml
de tu app:<application ...> ... <meta-data android:name="com.google.mlkit.vision.DEPENDENCIES" android:value="smart_reply" > <!-- To use multiple models: android:value="smart_reply,model2,model3" --> </application>
También puedes verificar de manera explícita la disponibilidad del modelo y solicitar la descarga a través de la API de ModuleInstallClient de los Servicios de Google Play.
Si no habilitas las descargas del modelo en el momento de la instalación ni solicitas la descarga explícita, el modelo se descargará la primera vez que ejecutes el generador de respuestas inteligentes. Las solicitudes que realices antes de que se complete la descarga no generan resultados.
1. Crea un objeto de historial de conversaciones
Para generar respuestas inteligentes, debes pasar al Kit de AA un
List
de objetosTextMessage
ordenado cronológicamente, con la marca de tiempo más antigua.Cuando el usuario envíe un mensaje, agrega el mensaje y su marca de tiempo al historial de conversaciones:
Kotlin
conversation.add(TextMessage.createForLocalUser( "heading out now", System.currentTimeMillis()))
Java
conversation.add(TextMessage.createForLocalUser( "heading out now", System.currentTimeMillis()));
Cuando el usuario reciba un mensaje, agrega el mensaje, su marca de tiempo y el ID de usuario del remitente al historial de conversaciones. El ID del usuario puede ser cualquier string que identifique de forma única al remitente en la conversación. No es necesario que el ID del usuario corresponda con ningún dato del usuario, y no es necesario que sea coherente entre la conversación o las invocaciones del generador de respuestas inteligentes.
Kotlin
conversation.add(TextMessage.createForRemoteUser( "Are you coming back soon?", System.currentTimeMillis(), userId))
Java
conversation.add(TextMessage.createForRemoteUser( "Are you coming back soon?", System.currentTimeMillis(), userId));
Un objeto de historial de conversaciones tiene el siguiente aspecto:
Marca de tiempo ID de usuario UsuarioLocal Mensajes Jue 21 de feb 13:13:39 PST 2019 verdadero ¿Vas por buen camino? Jue 21 de feb 13:15:03 PST 2019 AMIGO0 falso Llegaré tarde, lo siento. El Kit de AA sugiere respuestas al último mensaje de un historial de conversación. El último mensaje debe provenir de un usuario no local. En el ejemplo anterior, el último mensaje de la conversación es del usuario no local FRIENDS0. Cuando uses este registro para pasar el Kit de AA, se te sugieren respuestas al mensaje de FRIENDS
2. Obtén respuestas de mensajes
Para generar respuestas inteligentes a un mensaje, obtén una instancia de
SmartReplyGenerator
y pasa el historial de la conversación a su métodosuggestReplies()
:Kotlin
val smartReplyGenerator = SmartReply.getClient() smartReply.suggestReplies(conversation) .addOnSuccessListener { result -> if (result.getStatus() == SmartReplySuggestionResult.STATUS_NOT_SUPPORTED_LANGUAGE) { // The conversation's language isn't supported, so // the result doesn't contain any suggestions. } else if (result.getStatus() == SmartReplySuggestionResult.STATUS_SUCCESS) { // Task completed successfully // ... } } .addOnFailureListener { // Task failed with an exception // ... }
Java
SmartReplyGenerator smartReply = SmartReply.getClient(); smartReply.suggestReplies(conversation) .addOnSuccessListener(new OnSuccessListener
() { @Override public void onSuccess(SmartReplySuggestionResult result) { if (result.getStatus() == SmartReplySuggestionResult.STATUS_NOT_SUPPORTED_LANGUAGE) { // The conversation's language isn't supported, so // the result doesn't contain any suggestions. } else if (result.getStatus() == SmartReplySuggestionResult.STATUS_SUCCESS) { // Task completed successfully // ... } } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } }); Si la operación se realiza correctamente, se pasará un objeto
SmartReplySuggestionResult
al controlador de éxito. Este objeto contiene una lista de hasta tres respuestas sugeridas que puedes presentar al usuario:Kotlin
for (suggestion in result.suggestions) { val replyText = suggestion.text }
Java
for (SmartReplySuggestion suggestion : result.getSuggestions()) { String replyText = suggestion.getText(); }
Ten en cuenta que el Kit de AA podría no mostrar resultados si el modelo no está seguro de la relevancia de las respuestas sugeridas, la conversación de entrada no está en inglés o si el modelo detecta cuestiones sensibles.