例: 費用に基づくフリートの最適化

この例では、費用パラメータの定義方法に応じて、Route Optimization API ソリューションで使用される車両の数がどのように変化するかを示します。車両費用を調整することで、オプティマイザーが使用する車両の数を最小限に抑えることを優先するか、すべての配送を完了するまでの合計時間を最小限に抑えることを優先するかを制御できます。

コンセプトの概要については、費用モデルのキーコンセプトをご覧ください。

シナリオ 1: 車両の運用コストを最小限に抑える

このシナリオでは、費用が個々の車両に関連付けられている場合に、最も費用対効果の高いソリューションを生成するために必要な最小限の車両数をオプティマイザーが使用する方法を示します。

リクエスト例

このリクエストには次の情報が含まれます。

複数の車両を含むリクエストの例を見る

{
  "model": {
    "globalStartTime": "2023-01-13T16:00:00-08:00",
    "globalEndTime": "2023-01-14T16:00:00-08:00",
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 5.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 50.0,
        "costPerKilometer": 10.0
      },
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 50.0,
        "costPerKilometer": 10.0
      },
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerHour": 50.0,
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

レスポンスの例

3 台の車両が利用可能であるにもかかわらず、オプティマイザーはすべての配送を 1 台の車両に割り当て、1 件の配送をスキップします。複数の車両を運用するコストは、1 台の車両で 3 件の配送を行い、スキップ ペナルティが低い配送をスキップするよりも高いため、これが最も安価なソリューションです。

複数の車両を含むリクエストに対するレスポンスを確認する

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-14T00:00:00Z",
      "vehicleEndTime": "2023-01-14T00:28:22Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-14T00:00:00Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-14T00:02:30Z",
          "detour": "150s"
        },
        {
          "startTime": "2023-01-14T00:08:55Z",
          "detour": "150s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-14T00:21:21Z",
          "detour": "572s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:00:00Z"
        },
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:02:30Z"
        },
        {
          "travelDuration": "235s",
          "travelDistanceMeters": 795,
          "waitDuration": "0s",
          "totalDuration": "235s",
          "startTime": "2023-01-14T00:05:00Z"
        },
        {
          "travelDuration": "496s",
          "travelDistanceMeters": 1893,
          "waitDuration": "0s",
          "totalDuration": "496s",
          "startTime": "2023-01-14T00:13:05Z"
        },
        {
          "travelDuration": "171s",
          "travelDistanceMeters": 665,
          "waitDuration": "0s",
          "totalDuration": "171s",
          "startTime": "2023-01-14T00:25:31Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 2,
        "travelDuration": "902s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "800s",
        "totalDuration": "1702s",
        "travelDistanceMeters": 3353
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 33.53,
        "model.vehicles.cost_per_hour": 23.638888888888889
      },
      "routeTotalCost": 57.168888888888887
    },
    {
      "vehicleIndex": 1
    },
    {
      "vehicleIndex": 2
    }
  ],
  "skippedShipments": [
    {
      "index": 1
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 2,
      "travelDuration": "902s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "800s",
      "totalDuration": "1702s",
      "travelDistanceMeters": 3353
    },
    "usedVehicleCount": 1,
    "earliestVehicleStartTime": "2023-01-14T00:00:00Z",
    "latestVehicleEndTime": "2023-01-14T00:28:22Z",
    "totalCost": 62.168888888888887,
    "costs": {
      "model.vehicles.cost_per_hour": 23.638888888888889,
      "model.shipments.penalty_cost": 5,
      "model.vehicles.cost_per_kilometer": 33.53
    }
  }
}
    

レスポンスには、次の関連するパラメータが含まれます。

  • routes 配列には 3 つのオブジェクトが含まれています。1 つ目は vehicle[0] のルートを表し、次の 2 つには vehicleIndex のみが含まれています。これは、vehicle[1]vehicle[2] が使用されなかったことを示しています。
  • skippedShipments 配列は、index: 1 の配送(penaltyCost が 5.0 で最も低い)がスキップされたことを示しています。
  • metrics オブジェクトは、usedVehicleCount が 1 であることを確認します。

シナリオ 2: ソリューション全体の時間を最小限に抑える

このシナリオでは、より多くの車両を使用してすべての配送をより迅速に完了する方法について説明します。これを行うには、費用モデルを個々の車両の運用費用から、ソリューション全体の合計期間にペナルティを課すグローバル費用に移行します。

リクエスト例

このリクエストには、最初のシナリオからの次のパラメータの変更が含まれています。

  • 各車両の costPerHour を削除します。
  • globalDurationCostPerHour を 150.0 に追加します。この費用は、最初の車両が運行を開始してから最後の車両がルートを完了するまでの合計時間に適用されます。
  • shipment[1]penaltyCost を 75.00 に増やして、スキップされる可能性を減らします。

globalDurationCostPerHour を使用したリクエストの例をご覧ください

{
  "model": {
    "globalStartTime": "2023-01-13T16:00:00-08:00",
    "globalEndTime": "2023-01-14T16:00:00-08:00",
    "globalDurationCostPerHour": 150.0,
    "shipments": [
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789456,
              "longitude": -122.390192
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 100.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.789116,
              "longitude": -122.395080
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 75.0
      },
      {
        "deliveries": [
          {
            "arrivalLocation": {
              "latitude": 37.795242,
              "longitude": -122.399347
            },
            "duration": "250s"
          }
        ],
        "pickups": [
          {
            "arrivalLocation": {
              "latitude": 37.794465,
              "longitude": -122.394839
            },
            "duration": "150s"
          }
        ],
        "penaltyCost": 50.0
      }
    ],
    "vehicles": [
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerKilometer": 10.0
      },
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerKilometer": 10.0
      },
      {
        "endLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "startLocation": {
          "latitude": 37.794465,
          "longitude": -122.394839
        },
        "costPerKilometer": 10.0
      }
    ]
  }
}
    

レスポンスの例

新しいグローバル コストにより、オプティマイザーは 3 台の車両すべてを使用して 3 件の配送を完了します。ルートを並行して実行することで、合計移動距離は長くなりますが、オペレーションの合計所要時間を大幅に短縮できます。

globalDurationCostPerHour を使用したリクエストに対するレスポンスを確認する

{
  "routes": [
    {
      "vehicleStartTime": "2023-01-14T00:00:00Z",
      "vehicleEndTime": "2023-01-14T00:16:20Z",
      "visits": [
        {
          "shipmentIndex": 2,
          "isPickup": true,
          "startTime": "2023-01-14T00:00:00Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 2,
          "startTime": "2023-01-14T00:09:19Z",
          "detour": "0s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:00:00Z"
        },
        {
          "travelDuration": "409s",
          "travelDistanceMeters": 1371,
          "waitDuration": "0s",
          "totalDuration": "409s",
          "startTime": "2023-01-14T00:02:30Z"
        },
        {
          "travelDuration": "171s",
          "travelDistanceMeters": 665,
          "waitDuration": "0s",
          "totalDuration": "171s",
          "startTime": "2023-01-14T00:13:29Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 1,
        "travelDuration": "580s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "400s",
        "totalDuration": "980s",
        "travelDistanceMeters": 2036
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 20.36
      },
      "routeTotalCost": 20.36
    },
    {
      "vehicleIndex": 1,
      "vehicleStartTime": "2023-01-14T00:00:00Z",
      "vehicleEndTime": "2023-01-14T00:18:54Z",
      "visits": [
        {
          "shipmentIndex": 1,
          "isPickup": true,
          "startTime": "2023-01-14T00:00:00Z",
          "detour": "0s"
        },
        {
          "shipmentIndex": 1,
          "startTime": "2023-01-14T00:08:24Z",
          "detour": "0s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:00:00Z"
        },
        {
          "travelDuration": "354s",
          "travelDistanceMeters": 1192,
          "waitDuration": "0s",
          "totalDuration": "354s",
          "startTime": "2023-01-14T00:02:30Z"
        },
        {
          "travelDuration": "380s",
          "travelDistanceMeters": 1190,
          "waitDuration": "0s",
          "totalDuration": "380s",
          "startTime": "2023-01-14T00:12:34Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 1,
        "travelDuration": "734s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "400s",
        "totalDuration": "1134s",
        "travelDistanceMeters": 2382
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 23.82
      },
      "routeTotalCost": 23.82
    },
    {
      "vehicleIndex": 2,
      "vehicleStartTime": "2023-01-14T00:00:00Z",
      "vehicleEndTime": "2023-01-14T00:16:14Z",
      "visits": [
        {
          "isPickup": true,
          "startTime": "2023-01-14T00:00:00Z",
          "detour": "0s"
        },
        {
          "startTime": "2023-01-14T00:06:25Z",
          "detour": "0s"
        }
      ],
      "transitions": [
        {
          "travelDuration": "0s",
          "waitDuration": "0s",
          "totalDuration": "0s",
          "startTime": "2023-01-14T00:00:00Z"
        },
        {
          "travelDuration": "235s",
          "travelDistanceMeters": 795,
          "waitDuration": "0s",
          "totalDuration": "235s",
          "startTime": "2023-01-14T00:02:30Z"
        },
        {
          "travelDuration": "339s",
          "travelDistanceMeters": 1276,
          "waitDuration": "0s",
          "totalDuration": "339s",
          "startTime": "2023-01-14T00:10:35Z"
        }
      ],
      "metrics": {
        "performedShipmentCount": 1,
        "travelDuration": "574s",
        "waitDuration": "0s",
        "delayDuration": "0s",
        "breakDuration": "0s",
        "visitDuration": "400s",
        "totalDuration": "974s",
        "travelDistanceMeters": 2071
      },
      "routeCosts": {
        "model.vehicles.cost_per_kilometer": 20.71
      },
      "routeTotalCost": 20.71
    }
  ],
  "metrics": {
    "aggregatedRouteMetrics": {
      "performedShipmentCount": 3,
      "travelDuration": "1888s",
      "waitDuration": "0s",
      "delayDuration": "0s",
      "breakDuration": "0s",
      "visitDuration": "1200s",
      "totalDuration": "3088s",
      "travelDistanceMeters": 6489
    },
    "usedVehicleCount": 3,
    "earliestVehicleStartTime": "2023-01-14T00:00:00Z",
    "latestVehicleEndTime": "2023-01-14T00:18:54Z",
    "totalCost": 112.14,
    "costs": {
      "model.vehicles.cost_per_kilometer": 64.89,
      "model.global_duration_cost_per_hour": 47.25
    }
  }
}
    

レスポンスには、次の関連フィールドが含まれます。

  • routes 配列には、3 つの詳細なルートが含まれるようになり、各車両に 1 つの荷物が割り当てられます。
  • metrics.usedVehicleCount が 3 になりました。
  • ソリューション全体の時間(earliestVehicleStartTime から latestVehicleEndTime まで)は、以前のシナリオの 28 分 22 秒と比較して、わずか 18 分 54 秒になりました。