
- Dataset Availability
- 2014-03-01T00:00:00Z–2023-06-08T14:00:00
- Dataset Provider
- JAXA Earth Observation Research Center
- Earth Engine Snippet
-
ee.ImageCollection("JAXA/GPM_L3/GSMaP/v6/operational")
Sign up for Earth Engine
Earth Engine is free to use for research, education, and nonprofit use.
To access this dataset in Earth Engine, please sign up for Earth Engine then return to this page.
- Tags
Description
Global Satellite Mapping of Precipitation (GSMaP) provides a global hourly rain rate with a 0.1 x 0.1 degree resolution. GSMaP is a product of the Global Precipitation Measurement (GPM) mission, which provides global precipitation observations at three hour intervals. Values are estimated using multi-band passive microwave and infrared radiometers from the GPM Core Observatory satellite and with the assistance of a constellation of other satellites. GPM's precipitation rate retrieval algorithm is based on a radiative transfer model. The gauge-adjusted rate is calculated based on the optimization of the 24h accumulation of GSMaP hourly rain rate to daily precipitation by NOAA/CPC gauge measurement. This dataset is processed by GSMaP algorithm version 6 (product version 3). See GSMaP Technical Documentation for more details.
This dataset contains provisional products GSMaP_NRT that are regularly replaced with updated versions when the GSMaP_MVK data become available. The products are marked with a metadata property called ''status''. When a product is initially made available, the property value is ''provisional''. Once a provisional product has been updated with the final version, this value is updated to ''permanent''.
GSMaP for the reanalysis data (from 2000 to 2014) is also provided in the [GPM RNL collection][JAXA_GPM_L3_GSMaP_v6_reanalysis].
Bands
Resolution
11132 meters
Bands
Name | Units | Min | Max | Description | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
satelliteInfoFlag |
Satellite/sensor used |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
hourlyPrecipRate |
mm/hr | 0* | 204.88* | Snapshot of hourly precipitation rate |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
hourlyPrecipRateGC |
mm/hr | 0* | 200.36* | Snapshot of hourly precipitation rate adjusted to rain gauge |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
observationTimeFlag |
h | -124.72* | 16.06* | Relative time from the starting time of the file to the time of microwave radiometer (imager/sounder) observing. If no observation exists within the hourly window, the time will be the negative number of hours since the last observation. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
gaugeQualityInfo |
count/d | 0* | 121* | Existence of gauge adjustment when the status is 'provisional', 1 indicates adjusted and 0 is non-adjusted. When the status is 'permanent', the pixel value is the daily average of number of gauges used for adjustment in the pixel. |
Image Properties
Image Properties
Name | Type | Description |
---|---|---|
AlgorithmID | STRING | The algorithm that generated this product, e.g., 3GSMAPH |
AlgorithmVersion | STRING | The version of the algorithm that generated this product |
ProductVersion | STRING | The data version assigned by the processing system |
GenerationDateTime | STRING | The date and time this granule was generated |
StartGranuleDateTime | STRING | The start time defining this granule |
StopGranuleDateTime | STRING | The stop time defining this granule |
status | STRING | Permanent or provisional |
Terms of Use
Terms of Use
Anyone wishing to publish any results using the data from the JAXA Global Rainfall Watch System should clearly acknowledge the ownership of the data in the publication (for example, ' Global Rainfall Map in Near-Real-Time (GSMaP_NRT) by JAXA Global Rainfall Watch' was produced and distributed by the Earth Observation Research Center, Japan Aerospace Exploration Agency). If you have benefited from GSMaP rainfall products, please cite the major papers listed below. For additional information, please visit the JAXA Site Policy and the Users Guide.
Citations
K. Okamoto, T. Iguchi, N. Takahashi, K. Iwanami and T. Ushio, 2005: The global satellite mapping of precipitation (GSMaP) project, 25th IGARSS Proceedings, pp. 3414-3416.
T. Kubota, S. Shige, H. Hashizume, K. Aonashi, N. Takahashi, S. Seto, M. Hirose, Y. N. Takayabu, K. Nakagawa, K. Iwanami, T. Ushio, M. Kachi, and K. Okamoto, 2007: Global Precipitation Map using Satelliteborne Microwave Radiometers by the GSMaP Project : Production and Validation, IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 7, pp.2259-2275.
K. Aonashi, J. Awaka, M. Hirose, T. Kozu, T. Kubota, G. Liu, S. Shige, S., Kida, S. Seto, N.Takahashi, and Y. N. Takayabu, 2009: GSMaP passive, microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119-136.
T. Ushio, T. Kubota, S. Shige, K. Okamoto, K. Aonashi, T. Inoue, N., Takahashi, T. Iguchi, M.Kachi, R. Oki, T. Morimoto, and Z. Kawasaki, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137-151.
S. Shige, T. Yamamoto, T. Tsukiyama, S. Kida, H. Ashiwake, T. Kubota, S. Seto, K. Aonashi and K. Okamoto, 2009: The GSMaP precipitation retrieval algorithm for microwave sounders. Part I: Over-ocean algorithm. IEEE Trans. Geosci. Remote Sens, 47, 3084-3097.
M. Kachi, T. Kubota, T. Ushio, S. Shige, S. Kida, K. Aonashi, and K. Okamoto, 2011: Development and utilization of ''JAXA Global Rainfall Watch'' system. IEEJ Transactions on Fundamentals and Materials, 131, 729-737. (In Japanese).
T. Ushio, and M. Kachi, 2009: Kalman filtering application for the Global Satellite Mapping of Precipitation (GSMaP). Chapter for ''Satellite Rainfall Applications for Surface Hydrology'' (Editedy by Mekonnen Gebremichael and Faisal Hossain), Springer, ISBN978-9048129140, 105-123.
S. Seto, N. Takahashi, T. Iguchi, 2005: Rain/no-rain classification methods for microwave radiometer observations over land using statistical information for brightness temperatures under no-rain conditions. J. Appl. Meteor., 44, 8, 1243-1259.
Y. N.Takayabu, 2006: Rain-yield per flash calculated from TRMM PR and LIS data and its relationship to the contribution of tall convective rain, Geophys. Res. Lett., 33, L18705, doi:10.1029/2006GL027531
T. Ushio, D. Katagami, K. Okamoto, and T. Inoue, 2007: On the use of split window data in deriving the cloud motion vector for filling the gap of passive microwave rainfall estimation, SOLA, Vol. 3, 001-004, doi:10.2151/sola, February 2007-001.
N. Takahashi, and J. Awaka, 2007: Introduction of a melting layer model to a rain retrieval algorithm for microwave radiometers. Proc. 25th IGARSS, 3404?3409.
S. Seto, T. Kubota, N. Takahashi, T. Iguchi, T. Oki, 2008: Advanced rain/no-rain classification methods for microwave radiometer observations over land, J. Appl. Meteo. Clim., 47, 11, 3016-3029.
T. Kozu, T. Iguchi, T. Kubota, N. Yoshida, S. Seto, J. Kwiatkowski, and Y. N. Takayabu, 2009: Feasibility of Raindrop Size Distribution Parameter Estimation with TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 53-66.
T. Kubota, S. Shige, K. Aonashi, K. Okamoto, 2009: Development of nonuniform beamfilling correction method in rainfall retrievals for passive microwave radiometers over ocean using TRMM observations. J. Meteor. Soc. Japan, 87A, 153-164.
S. Kida, S. Shige, T. Kubota, K. Aonashi, and K. Okamoto, 2009: Improvement of rain/no-rain classification methods for microwave radiometer observations over ocean using the 37-GHz emission signature. J. Meteor. Soc. Japan, 87A, 165-181.
S. Shige, T. Watanabe, H. Sasaki,T. Kubota, S. Kida, and K. Okamoto, 2008: Validation of western and eastern Pacific rainfall estimates from the TRMM PR using a radiative transfer model, J. Geophys. Res., doi:10.1029/2007JD009002
S. Seto, T. Kubota, T. Iguchi, N. Takahashi, T. Oki, 2009: An evaluation of over-land rain rate estimates by the GSMaP and GPROF algorithms;The role of lower-frequency channels. J. Meteor. Soc. Japan, 87A, 183-202.
T. Kubota, T. Ushio, S. Shige, S. Kida, M. Kachi, and K. Okamoto, 2009: Verification of high resolution satellite-based rainfall estimates around Japan using gauge-calibrated ground radar dataset. J. Meteor. Soc. Japan, 87A, 203-222.
S. Kida, T. Kubota, M. Kachi, S. Shige, and R. Oki, 2012: Development of precipitation retrieval algorithm over land for a satellite-borne microwave sounder. Proc. of IGARSS 2012, 342-345.
A. Taniguchi, S. Shige, M. K. Yamamoto, T. Mega, S. Kida, T. Kubota, M. Kachi, T. Ushio, and K. Aonashi, 2013: Improvement of high-resolution satellite rainfall product for Typhoon Morakot (2009) over Taiwan. J. Hydrometeor., 14, 1859-1871.
T. Kubota, S. Shige, M. Kachi, and K. Aonashi. 2011: Development of SSMIS rain retrieval algorithm in the GSMaP project. Proc 28th ISTS, 2011-n-46.
T. Ushio, T. Tashima, T. Kubota, and M. Kachi, 2013: Gauge Adjusted Global Satellite Mapping of Precipitation (GSMaP_Gauge), Proc. 29th ISTS, 2013-n-48.
S. Shige, M.K. Yamamoto, and A. Taniguchi, 2014. Improvement of TMI rain retrieval over the Indian Subcontinent. Geophys. Monogr. Ser. (in print).
M.K. Yamamoto, and S. Shige, 2014: Implementation of an orographic/nonorographic rainfall classification scheme in the GSMaP algorithm for microwave radiometers. Atmos. Res. (in print).
DOIs
Explore in Earth Engine
var dataset = ee.ImageCollection('JAXA/GPM_L3/GSMaP/v6/operational') .filter(ee.Filter.date('2018-08-06', '2018-08-07')); var precipitation = dataset.select('hourlyPrecipRate'); var precipitationVis = { min: 0.0, max: 30.0, palette: ['1621a2', 'ffffff', '03ffff', '13ff03', 'efff00', 'ffb103', 'ff2300'], }; Map.setCenter(-90.7, 26.12, 2); Map.addLayer(precipitation, precipitationVis, 'Precipitation');