以下各部分中提供了模拟数据,作为每种数据类型和格式的示例。
CSV
使用 CsvDataLoader
加载模拟 CSV 数据:
将列名称映射到变量类型。所需的变量类型为
time
、geo
、controls
、population
、kpi
和revenue_per_kpi
。对于没有覆盖面和频次数据的媒体渠道,您必须将其媒体曝光和媒体支出分别分配至media
和media_spend
类别。相反,对于拥有覆盖面和频次数据的媒体渠道,您必须将其覆盖面、频次和媒体支出分别映射到reach
、frequency
和rf_spend
类别。如需了解每个变量的定义,请参阅收集和整理数据。coord_to_columns = load.CoordToColumns( time='time', geo='geo', controls=['GQV', 'Discount', 'Competitor_Sales'], population='population', kpi='conversions', revenue_per_kpi='revenue_per_conversion', media=[ 'Channel0_impression', 'Channel1_impression', 'Channel2_impression', 'Channel3_impression', ], media_spend=[ 'Channel0_spend', 'Channel1_spend', 'Channel2_spend', 'Channel3_spend', ], reach =['Channel4_reach', 'Channel5_reach'], frequency=['Channel4_frequency', 'Channel5_frequency'], rf_spend=['Channel4_spend', 'Channel5_spend'], )
将媒体曝光、覆盖面、频次和媒体支出映射到要在双页输出中显示的指定渠道名称。下例中的
Channel0_impression
和Channel0_spend
连接到同一个渠道Channel0
。此外,Channel4_reach
、Channel4_frequency
和Channel4_spend
连接到同一个渠道Channel4
。correct_media_to_channel = { 'Channel0_impression': 'Channel0', 'Channel1_impression': 'Channel1', 'Channel2_impression': 'Channel2', 'Channel3_impression': 'Channel3', } correct_media_spend_to_channel = { 'Channel0_spend': 'Channel0', 'Channel1_spend': 'Channel1', 'Channel2_spend': 'Channel2', 'Channel3_spend': 'Channel3', } correct_reach_to_channel = { 'Channel4_reach': 'Channel4', 'Channel5_reach': 'Channel5', } correct_frequency_to_channel = { 'Channel4_frequency': 'Channel4', 'Channel5_frequency': 'Channel5', } correct_rf_spend_to_channel = { 'Channel4_spend': 'Channel4', 'Channel5_spend': 'Channel5', }
使用
CsvDataLoader
加载数据:loader = load.CsvDataLoader( csv_path=f'/{PATH}/{FILENAME}.csv', kpi_type='non_revenue', coord_to_columns=coord_to_columns, media_to_channel=correct_media_to_channel, media_spend_to_channel=correct_media_spend_to_channel, reach_to_channel=correct_reach_to_channel, frequency_to_channel=correct_frequency_to_channel, rf_spend_to_channel=correct_rf_spend_to_channel, ) data = loader.load()
其中:
kpi_type
是'revenue'
或'non_revenue'
。PATH
表示指向数据文件位置的路径。FILENAME
表示数据文件的名称。
Xarray 数据集
使用 XrDatasetDataLoader
加载序列化模拟 Xarray 数据集:
使用
pickle
加载数据:import pickle with open(f'/{PATH}/{FILENAME}.pkl', 'r') as fh: dataset=pickle.load(fh)
其中:
PATH
表示指向数据文件位置的路径。FILENAME
表示数据文件的名称。
将数据集传递给
XrDatasetDataLoader
。使用name_mapping
实参映射坐标和数组。如果输入数据集内的名称与所需名称不同,请提供映射。所需的坐标名称为geo
、time
、control_variable
、media_channel
和rf_channel
,其中rf_channel
用于指定拥有覆盖面和频次数据的渠道。所需的数据变量名称为kpi
、revenue_per_kpi
、controls
、population
、media
、media_spend
、reach
、frequency
和rf_spend
。loader = load.XrDatasetDataLoader( dataset, kpi_type='non_revenue', name_mapping={ 'channel': 'media_channel', 'control': 'control_variable', 'conversions': 'kpi', 'revenue_per_conversion': 'revenue_per_kpi', 'control_value': 'controls', 'spend': 'media_spend', 'reach': 'reach', 'frequency': 'frequency', 'rf_spend': 'rf_spend', }, ) data = loader.load()
其中:
kpi_type
是'revenue'
或'non_revenue'
。
Numpy 多维数组
如需直接加载 NumPy 多维数组,请使用 NDArrayInputDataBuilder
:
将数据创建为单独的 NumPy 多维数组。
import numpy as np kpi_nd = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) controls_nd = np.array([ [[1, 5], [2, 6], [3, 4]], [[7, 8], [9, 10], [11, 12]], [[13, 14], [15, 16], [17, 18]], ]) population_nd = np.array([1, 2, 3]) revenue_per_kpi_nd = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) reach_nd = np.array([ [[1, 5], [2, 6], [3, 4]], [[7, 8], [9, 10], [11, 12]], [[13, 14], [15, 16], [17, 18]], ]) frequency_nd = np.array([ [[1, 5], [2, 6], [3, 4]], [[7, 8], [9, 10], [11, 12]], [[13, 14], [15, 16], [17, 18]], ]) rf_spend_nd = np.array([ [[1, 5], [2, 6], [3, 4]], [[7, 8], [9, 10], [11, 12]], [[13, 14], [15, 16], [17, 18]], ])
使用
NDArrayInputDataBuilder
设置时间和地理位置,并根据 Meridian 输入数据中的要求指定渠道或维度名称。如需了解每个变量的定义,请参阅收集和整理数据。from meridian.data import nd_array_input_data_builder as data_builder builder = ( data_builder.NDArrayInputDataBuilder(kpi_type='non_revenue') ) builder.time_coords = ['2024-01-02', '2024-01-03', '2024-01-01'] builder.media_time_coords = ['2024-01-02', '2024-01-03', '2024-01-01'] builder.geos = ['B', 'A', 'C'] builder = ( builder .with_kpi(kpi_nd) .with_revenue_per_kpi(revenue_per_kpi_nd) .with_population(population_nd) .with_controls( controls_nd, control_names=["control0", "control1"]) .with_reach( r_nd=reach_nd, f_nd=frequency_nd, rfs_nd=rf_spend_nd, rf_channels=["channel0", "channel1"] ) ) data = builder.build()
其中:
kpi_type
是'revenue'
或'non_revenue'
。
Pandas DataFrame 或其他数据格式
使用 DataFrameInputDataBuilder
加载模拟的其他数据格式(例如 excel
):
将数据(例如
excel
电子表格)读入一个或多个 PandasDataFrame
。import pandas as pd df = pd.read_excel( 'https://github.com/google/meridian/raw/main/meridian/data/simulated_data/xlsx/geo_media_rf.xlsx', engine='openpyxl', )
使用
DataFrameInputDataBuilder
将列名称映射到 Meridian 输入数据所需的变量类型。如需了解每个变量的定义,请参阅收集和整理数据。from meridian.data import data_frame_input_data_builder as data_builder builder = data_builder.DataFrameInputDataBuilder( kpi_type='non_revenue', default_kpi_column="conversions", default_revenue_per_kpi_column="revenue_per_conversion", ) builder = ( builder .with_kpi(df) .with_revenue_per_kpi(df) .with_population(df) .with_controls(df, control_cols=["GQV", "Discount", "Competitor_Sales"]) .with_reach( df, reach_cols = ['Channel4_reach', 'Channel5_reach'], frequency_cols = ['Channel4_frequency', 'Channel5_frequency'], rf_spend_cols = ['Channel4_spend', 'Channel5_spend'], rf_channels = ['Channel4', 'Channel5'], ) ) data = builder.build()
其中:
kpi_type
是'revenue'
或'non_revenue'
。
接下来,您可以创建模型。