Join the newly launched
Discord community for real-time discussions, peer support, and direct interaction with the Meridian team!
ROI, mROI e curve di risposta
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Per un determinato canale media \(q\), il risultato incrementale è definito come:
\[\text{IncrementalOutcome}_q = \text{IncrementalOutcome} \left(\Bigl\{
x_{g,t,i}^{[M]} \Bigr\}, \Bigl\{ x_{g,t,i}^{[M](0,q)} \Bigr\} \right)\]
Dove:
- \(\left\{ x_{g,t,i}^{[M]} \right\}\) sono i valori medi osservati
- \(\left\{ x_{g,t,m}^{[M] (0,q)} \right\}\) indica i valori medi osservati per tutti i canali tranne il canale \(q\), che è impostato su zero ovunque. Più nello specifico:
- \(x_{g,t,q}^{[M] (0,q)}=0\ \forall\ g,t\)
- \(x_{g,t,i}^{[M](0,q)}=x_{g,t,i}^{[M]}\ \forall\ g,t,i \neq q\)
Il ROI del canale \(q\) è definito come:
\[\text{ROI}_q = \dfrac{\text{IncrementalOutcome}_q}{\text{Cost}_q}\]
Dove \(\text{Cost}_q= \sum\limits _{g,t} \overset \sim x^{[M]}_{g,t,q}\)
Tieni presente che il denominatore del ROI rappresenta il costo dei media in un periodo di tempo specificato
in linea con il periodo di tempo in cui è definito il risultato incrementale.
Di conseguenza, il risultato incrementale nel numeratore include l'effetto ritardato
dei contenuti multimediali pubblicati prima di questa finestra temporale ed esclude in modo simile l'effetto futuro
dei contenuti multimediali pubblicati durante questa finestra temporale. Di conseguenza, il risultato incrementale nel
numeratore non è perfettamente in linea con il costo nel denominatore.
Tuttavia, questo disallineamento sarà meno significativo in un periodo di tempo ragionevolmente lungo.
Tieni presente che lo scenario media controfattuale (\(\left\{ x_{g,t,i}^{[M](0,q)}
\right\}\)) potrebbe non essere effettivamente rappresentato nei dati. In questi casi, è necessaria l'estrapolazione in base alle ipotesi del modello per dedurre il gruppo di controllo.
Generalizzando la definizione del risultato incrementale, la curva di risposta è definita per il canale \(q\) come funzione che restituisce il risultato incrementale come funzione della spesa per il canale \(q\):
\[\text{IncrementalOutcome}_q (\omega \cdot \text{Cost}_q) =
\text{IncrementalOutcome} \left(\left\{ x^{[M](\omega,q)}_{g,t,i} \right\},
\left\{ x^{[M](0,q)}_{g,t,i} \right\}\right)\]
Dove \(\left\{ x^{[M](\omega,q)}_{g,t,i} \right\}\) indica i valori medi osservati per tutti i canali tranne il canale \(q\), che viene moltiplicato per un coefficiente \(\omega\) ovunque. Più nello specifico:
- \(x^{[M](\omega,q)}_{g,t,q}=\omega \cdot x^{[M]}_{g,t,q}\ \forall\ g,t\)
- \(x^{[M](\omega,q)}_{g,t,i}=x^{[M]}_{g,t,i} \forall\ g,t,i \neq q\)
Il ROI marginale del canale \(q\) è definito come:
$$
\text{mROI}_q = \text{IncrementalOutcome} \left( \left\{ x^{[M](1+\delta,q)}_{g,t,i} \right\},
\dfrac{
\left\{x^{[M](1,q)}_{g,t,i}\right\}
}{
\delta \cdot \text{Cost}_q
} \right)
$$
dove \(\delta\) è una piccola quantità, ad esempio \(0.01\).
Tieni presente che le definizioni della curva di risposta e del ROI marginale presuppongono implicitamente un costo per unità di media costante pari al costo medio per unità di media storico.
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2024-11-26 UTC.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Mancano le informazioni di cui ho bisogno","missingTheInformationINeed","thumb-down"],["Troppo complicato/troppi passaggi","tooComplicatedTooManySteps","thumb-down"],["Obsoleti","outOfDate","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Problema relativo a esempi/codice","samplesCodeIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2024-11-26 UTC."],[[["\u003cp\u003eIncremental outcome measures the change in outcome attributed to a specific media channel by comparing observed media values to a scenario where that channel's values are zero.\u003c/p\u003e\n"],["\u003cp\u003eROI is calculated by dividing the incremental outcome of a media channel by its cost, reflecting the return on investment for that channel.\u003c/p\u003e\n"],["\u003cp\u003eResponse curves illustrate the relationship between media spend on a specific channel and the resulting incremental outcome, providing insights into channel effectiveness at different investment levels.\u003c/p\u003e\n"],["\u003cp\u003eMarginal ROI measures the incremental outcome gained by increasing spend on a specific channel by a small percentage, indicating the return on additional investment in that channel.\u003c/p\u003e\n"],["\u003cp\u003eThese metrics rely on counterfactual scenarios, sometimes requiring model-based extrapolation when observed data doesn't fully represent those scenarios.\u003c/p\u003e\n"]]],["Incremental outcome for a media channel is calculated by comparing observed media values to a scenario where that channel's values are zeroed out. ROI is the incremental outcome divided by the channel's cost. Response curves show how incremental outcome changes with varying spend on a channel. Marginal ROI (mROI) measures the change in incremental outcome from a small increase in channel spend, assuming a constant cost per media unit. Counterfactual scenarios where channels are zeroed out might need to be inferred by the models.\n"],null,["# ROI, mROI, and response curves\n\nIncremental outcome\n-------------------\n\nFor a given media channel \\\\(q\\\\), the incremental outcome is defined as:\n\n\\\\\\[\\\\text{IncrementalOutcome}_q = \\\\text{IncrementalOutcome} \\\\left(\\\\Bigl\\\\{\nx_{g,t,i}\\^{\\[M\\]} \\\\Bigr\\\\}, \\\\Bigl\\\\{ x_{g,t,i}\\^{\\[M\\](0,q)} \\\\Bigr\\\\} \\\\right)\\\\\\]\n\nWhere:\n\n- \\\\(\\\\left\\\\{ x_{g,t,i}\\^{\\[M\\]} \\\\right\\\\}\\\\) are the observed media values\n- \\\\(\\\\left\\\\{ x_{g,t,i}\\^{\\[M\\] (0,q)} \\\\right\\\\}\\\\) denotes the observed media values for all channels except channel \\\\(q\\\\), which is set to zero everywhere. More specifically:\n - \\\\(x_{g,t,q}\\^{\\[M\\] (0,q)}=0\\\\ \\\\forall\\\\ g,t\\\\)\n - \\\\(x_{g,t,i}\\^{\\[M\\](0,q)}=x_{g,t,i}\\^{\\[M\\]}\\\\ \\\\forall\\\\ g,t,i \\\\neq q\\\\)\n\nROI\n---\n\nThe ROI of channel \\\\(q\\\\) is defined as:\n\n\\\\\\[\\\\text{ROI}_q = \\\\dfrac{\\\\text{IncrementalOutcome}_q}{\\\\text{Cost}_q}\\\\\\]\n\nWhere \\\\(\\\\text{Cost}_q= \\\\sum\\\\limits _{g,t} \\\\overset \\\\sim x\\^{\\[M\\]}_{g,t,q}\\\\)\n\nNote that the ROI denominator represents media cost over a specified time period\nthat aligns with the time period over which the incremental outcome is defined.\nAs a result, the incremental outcome in the numerator includes the lagged effect\nof media executed prior to this time window, and similarly excludes the future\neffect of media executed during this time window. So, the incremental outcome in\nthe numerator does not perfectly align with the cost in the denominator.\nHowever, this misalignment will be less material over a reasonably long time\nwindow.\n\nNote that the counterfactual media scenario (\\\\(\\\\left\\\\{ x_{g,t,i}\\^{\\[M\\](0,q)}\n\\\\right\\\\}\\\\)) may not actually be represented in the data. When this happens,\nextrapolation based on model assumptions is necessary to infer the\ncounterfactual.\n\nResponse curves\n---------------\n\nGeneralizing the incremental outcome definition, the response curve is defined\nfor channel \\\\(q\\\\) as a function which returns the incremental outcome as a\nfunction of the spend on channel \\\\(q\\\\):\n\n\\\\\\[\\\\text{IncrementalOutcome}_q (\\\\omega \\\\cdot \\\\text{Cost}_q) =\n\\\\text{IncrementalOutcome} \\\\left(\\\\left\\\\{ x\\^{\\[M\\](\\\\omega,q)}_{g,t,i} \\\\right\\\\},\n\\\\left\\\\{ x\\^{\\[M\\](0,q)}_{g,t,i} \\\\right\\\\}\\\\right)\\\\\\]\n\nWhere \\\\(\\\\left\\\\{ x\\^{\\[M\\](\\\\omega,q)}_{g,t,i} \\\\right\\\\}\\\\) denotes the observed\nmedia values for all channels except channel \\\\(q\\\\), which is multiplied by a\nfactor of \\\\(\\\\omega\\\\) everywhere. More specifically:\n\n- \\\\(x\\^{\\[M\\](\\\\omega,q)}_{g,t,q}=\\\\omega \\\\cdot x\\^{\\[M\\]}_{g,t,q}\\\\ \\\\forall\\\\ g,t\\\\)\n- \\\\(x\\^{\\[M\\](\\\\omega,q)}_{g,t,i}=x\\^{\\[M\\]}_{g,t,i} \\\\forall\\\\ g,t,i \\\\neq q\\\\)\n\nMarginal ROI (mROI)\n-------------------\n\nThe marginal ROI (mROI) of channel \\\\(q\\\\) is defined as: \n$$ \\\\text{mROI}_q = \\\\left(\\\\dfrac{1}{\\\\delta \\\\cdot \\\\text{Cost}_q} \\\\right) \\\\text{IncrementalOutcome} \\\\left( \\\\left\\\\{ x\\^{\\[M\\](1+\\\\delta,q)}_{g,t,i} \\\\right\\\\}, \\\\left\\\\{x\\^{\\[M\\](1,q)}_{g,t,i}\\\\right\\\\} \\\\right) $$\n\nWhere \\\\(\\\\delta\\\\) is a small quantity, such as \\\\(0.01\\\\).\n\nNote that the response curve and marginal ROI definitions implicitly assumes a\nconstant cost per media unit that equals the historical average cost per media\nunit."]]