Berdasarkan asumsi pertukaran dan konsistensi, ekspektasi
kondisional dari setiap hasil potensial \(\overset \sim Y_{g,t}^{
\left(\left\{ x_{g,t,i}^{(\ast)} \right\}\right) }\) dapat ditulis dalam bentuk
ekspektasi kondisional yang dapat diperkirakan oleh model regresi, dengan
\(x_{g,t,i}^{(\ast)}\) mewakili kumpulan variabel perlakuan yang dapat diintervensi:
media, media organik, dan perlakuan non-media. Untuk tujuan demonstrasi, kami
menganggap saluran media berbayar dan organik di sini berbasis tayangan, meskipun
hal berikut juga berlaku untuk saluran berbasis jangkauan dan frekuensi.
Dari definisi yang dijelaskan dalam Data
input, ini dapat ditulis sebagai:
$$
\begin{align*}
\overset \sim Y_{g,t} &= u_{g,t}^{[Y]} \overset {\cdot \cdot} Y_{g,t} \\
&= u_{g,t}^{[Y]}L_{g,t}^{[Y]-1}(Y_{g,t})
\end{align*}
$$
Meridian juga memanfaatkan fakta bahwa fungsi transformasi KPI pre-pemodelan \(L_{g,t}^{[Y]}(\cdot)\) bersifat linear sehingga dapat
diteruskan di luar operator ekspektasi bersyarat. Hal ini menghasilkan
kesetaraan berikut, dengan hasil berupa kuantitas yang dapat diperkirakan dari
model regresi, seperti model Meridian:
$$
\begin{align*}
E\left(\overset \sim Y_{g,t}^{(\left\{ x_{g,t,i}^{(\ast)} \right\})} \Big|
\bigl\{ z_{g,t,i} \bigr\} \right)
&= E\left( \overset \sim Y_{g,t} \Big|
\bigl\{x_{g,t,i}^{(\ast)}\bigr\}, \bigl\{z_{g,t,i}\bigr\} \right) \\
&= E\left( u_{g,t}^{[Y]}L_{g,t}^{[Y]-1}(Y_{g,t}) \Big|
\bigl\{ x_{g,t,i}^{(\ast)} \bigr\}, \bigl\{z_{g,t,i}\bigr\} \right) \\
&= u_{g,t}^{[Y]}L_{g,t}^{[Y]-1} E\left( Y_{g,t} \Big|
\bigl\{ x_{g,t,i}^{(\ast)} \bigr\}, \bigl\{z_{g,t,i}\bigr\} \right)
\end{align*}
$$
Berdasarkan hal ini, regresi dapat digunakan untuk memperkirakan hasil inkremental
antara dua skenario counterfactual \(\left\{ x_{g,t,i}^{(1)} \right\}\)
dan \(\left\{ x_{g,t,i}^{(0)} \right\}\):
$$
\begin{align*}
\text{IncrementalOutcome} \left( \bigl\{ x_{g,t,i}^{(1)} \bigr\},
\bigl\{ x_{g,t,i}^{(0)} \bigr\} \right)
&= E\left( \sum\limits_{g,t}\left( \overset \sim Y_{g,t}^{
\left( \left\{ x_{g,t,i}^{(1)} \right\} \right)
} - \overset \sim Y_{g,t}^{
\left( \left\{ x_{g,t,i}^{(0)} \right\} \right)
} \right) \Bigg| \bigl\{ z_{g,t,i} \bigr\} \right) \\
&= \sum\limits_{g,t}u_{g,t}^{[Y]}L_g^{[Y]-1}
\left( E\left( Y_{g,t} \Big| \bigl\{ x_{g,t,i}^{(1)} \bigr\},
\bigl\{ z_{g,t,i} \bigr\} \right)\right) -
\sum\limits_{g,t}u_{g,t}^{[Y]}L_{g,t}^{[Y]-1}
\left( E\left( Y_{g,t} \Big| \bigl\{ x_{g,t,i}^{(0)} \bigr\},
\bigl\{ z_{g,t,c} \bigr\}
\right) \right)
\end{align*}
$$
Di bagian spesifikasi model Meridian:
$$
\begin{align*}
E\left( Y_{g,t} \Big|
\bigl\{ x_{g,t,i}^{(\ast)} \bigr\}, \bigl\{ z_{g,t,i} \bigr\} \right) =
\mu_t &+ \tau_g + \sum\limits_{i=1}^{N_C} \gamma^{[C]}_{g,i}z_{g,t,i} \\
&+ \sum\limits_{i=1}^{N_N} \gamma^{[N]}_{g,i}x^{[N] (\ast)}_{g,t,i} \\
&+ \sum\limits_{i=1}^{N_M} \beta^{[M]}_{g,i} \text{HillAdstock} \left(
\bigl\{ x^{[M] (\ast)}_{g,t-s,i} \bigr\}^L_{s=0};\ \alpha^{[M]}_i, ec^{[M]}_i, \text{slope}^{[M]}_i
\right) \\
&+ \sum\limits_{i=1}^{N_{OM}} \beta^{[OM]}_{g,i} \text{HillAdstock} \left(
\bigl\{ x^{[OM] (\ast)}_{g,t-s,i} \bigr\}^L_{s=0};\ \alpha^{[OM]}_i, ec^{[OM]}_i, \text{slope}^{[OM]}_i
\right)
\end{align*}
$$
Kuantitas ini adalah fungsi dari parameter model, sehingga memiliki
distribusi posterior yang dapat diambil sampelnya oleh Meridian menggunakan Markov Chain
Monte Carlo (MCMC). ROI, mROI, dan kurva respons semuanya dapat dihitung berdasarkan
definisi hasil
inkremental, dan setiap
jumlah ini juga memiliki distribusi posterior.