AI-generated Key Takeaways
-
The Route Optimization API optimizes shipment completion order and vehicle assignments to minimize costs based on provided parameters.
-
Vehicle and shipment cost parameters should accurately reflect your business objectives to achieve desired optimization outcomes.
-
Prioritizing global solution time over individual vehicle route times can increase vehicle utilization, potentially leading to more vehicles being used.
-
The cost model enables trade-offs between overall solution time and individual vehicle travel time and distance.
-
Cost parameters should be grounded in real-world values to ensure the API aligns with your intended optimization goals.
This example shows how the number of vehicles used in a Route Optimization API solution can vary depending on how you define your cost parameters. By adjusting vehicle costs, you can influence whether the optimizer prioritizes minimizing the number of vehicles used or minimizing the total time it takes to complete all shipments.
For a complete conceptual overview, see the Cost model key concept.
Scenario 1: Minimizing vehicle operating costs
This scenario shows how the optimizer uses the minimum number of vehicles necessary to produce the most cost-effective solution when costs are tied to individual vehicles.
Example request
This request includes the following information:
- Three
shipments, each with a differentpenaltyCost: 100.0, 5.0, and 50.0. - Three identical
vehicles, each with acostPerHourof 50.0 and acostPerKilometerof 10.0.
See an example request with multiple vehicles
{ "model": { "globalStartTime": "2023-01-13T16:00:00-08:00", "globalEndTime": "2023-01-14T16:00:00-08:00", "shipments": [ { "deliveries": [ { "arrivalLocation": { "latitude": 37.789456, "longitude": -122.390192 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 100.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.789116, "longitude": -122.395080 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 5.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.795242, "longitude": -122.399347 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 50.0 } ], "vehicles": [ { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 50.0, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 50.0, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 50.0, "costPerKilometer": 10.0 } ] } }
Example response
Even though three vehicles were available, the optimizer assigns all the shipments to a single vehicle and skips one shipment. This is the cheapest solution since the cost of operating more than one vehicle is higher than delivering three shipments with one vehicle and skipping a shipment with a low skip penalty.
See a response to the request with multiple vehicles
{ "routes": [ { "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:28:22Z", "visits": [ { "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "shipmentIndex": 2, "isPickup": true, "startTime": "2023-01-14T00:02:30Z", "detour": "150s" }, { "startTime": "2023-01-14T00:08:55Z", "detour": "150s" }, { "shipmentIndex": 2, "startTime": "2023-01-14T00:21:21Z", "detour": "572s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "235s", "travelDistanceMeters": 795, "waitDuration": "0s", "totalDuration": "235s", "startTime": "2023-01-14T00:05:00Z" }, { "travelDuration": "496s", "travelDistanceMeters": 1893, "waitDuration": "0s", "totalDuration": "496s", "startTime": "2023-01-14T00:13:05Z" }, { "travelDuration": "171s", "travelDistanceMeters": 665, "waitDuration": "0s", "totalDuration": "171s", "startTime": "2023-01-14T00:25:31Z" } ], "metrics": { "performedShipmentCount": 2, "travelDuration": "902s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "800s", "totalDuration": "1702s", "travelDistanceMeters": 3353 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 33.53, "model.vehicles.cost_per_hour": 23.638888888888889 }, "routeTotalCost": 57.168888888888887 }, { "vehicleIndex": 1 }, { "vehicleIndex": 2 } ], "skippedShipments": [ { "index": 1 } ], "metrics": { "aggregatedRouteMetrics": { "performedShipmentCount": 2, "travelDuration": "902s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "800s", "totalDuration": "1702s", "travelDistanceMeters": 3353 }, "usedVehicleCount": 1, "earliestVehicleStartTime": "2023-01-14T00:00:00Z", "latestVehicleEndTime": "2023-01-14T00:28:22Z", "totalCost": 62.168888888888887, "costs": { "model.vehicles.cost_per_hour": 23.638888888888889, "model.shipments.penalty_cost": 5, "model.vehicles.cost_per_kilometer": 33.53 } } }
The response contains the following relevant parameters:
- The
routesarray contains three objects. The first describes the route forvehicle[0], while the next two only contain avehicleIndex, indicating thatvehicle[1]andvehicle[2]were not used. - The
skippedShipmentsarray shows that the shipment withindex: 1, which had the lowestpenaltyCostof 5.0, was skipped. - The
metricsobject confirms that theusedVehicleCountis 1.
Scenario 2: Minimizing overall solution time
This scenario shows how to encourage the use of more vehicles to complete all shipments more quickly. Do this by shifting the cost model from individual vehicle operating costs to a global cost that penalizes the total duration of the entire solution.
Example request
This request includes the following parameter changes from the first scenario:
- Removes
costPerHouron each vehicle. - Adds
globalDurationCostPerHourof 150.0. This cost applies to the total time from when the first vehicle starts to when the last vehicle finishes its route. - Increase the
penaltyCostforshipment[1]to 75.00 to reduce changes of it being skipped.
See an example request using
globalDurationCostPerHour
{ "model": { "globalStartTime": "2023-01-13T16:00:00-08:00", "globalEndTime": "2023-01-14T16:00:00-08:00", "globalDurationCostPerHour": 150.0, "shipments": [ { "deliveries": [ { "arrivalLocation": { "latitude": 37.789456, "longitude": -122.390192 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 100.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.789116, "longitude": -122.395080 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 75.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.795242, "longitude": -122.399347 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 50.0 } ], "vehicles": [ { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerKilometer": 10.0 } ] } }
Example response
With the new global cost, the optimizer now uses all three vehicles to complete all three shipments. By running the routes in parallel, the total duration of the operation is significantly reduced, even though the combined travel distance is higher.
See a response to the request using
globalDurationCostPerHour
{ "routes": [ { "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:16:20Z", "visits": [ { "shipmentIndex": 2, "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "shipmentIndex": 2, "startTime": "2023-01-14T00:09:19Z", "detour": "0s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "409s", "travelDistanceMeters": 1371, "waitDuration": "0s", "totalDuration": "409s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "171s", "travelDistanceMeters": 665, "waitDuration": "0s", "totalDuration": "171s", "startTime": "2023-01-14T00:13:29Z" } ], "metrics": { "performedShipmentCount": 1, "travelDuration": "580s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "400s", "totalDuration": "980s", "travelDistanceMeters": 2036 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 20.36 }, "routeTotalCost": 20.36 }, { "vehicleIndex": 1, "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:18:54Z", "visits": [ { "shipmentIndex": 1, "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "shipmentIndex": 1, "startTime": "2023-01-14T00:08:24Z", "detour": "0s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "354s", "travelDistanceMeters": 1192, "waitDuration": "0s", "totalDuration": "354s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "380s", "travelDistanceMeters": 1190, "waitDuration": "0s", "totalDuration": "380s", "startTime": "2023-01-14T00:12:34Z" } ], "metrics": { "performedShipmentCount": 1, "travelDuration": "734s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "400s", "totalDuration": "1134s", "travelDistanceMeters": 2382 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 23.82 }, "routeTotalCost": 23.82 }, { "vehicleIndex": 2, "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:16:14Z", "visits": [ { "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "startTime": "2023-01-14T00:06:25Z", "detour": "0s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "235s", "travelDistanceMeters": 795, "waitDuration": "0s", "totalDuration": "235s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "339s", "travelDistanceMeters": 1276, "waitDuration": "0s", "totalDuration": "339s", "startTime": "2023-01-14T00:10:35Z" } ], "metrics": { "performedShipmentCount": 1, "travelDuration": "574s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "400s", "totalDuration": "974s", "travelDistanceMeters": 2071 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 20.71 }, "routeTotalCost": 20.71 } ], "metrics": { "aggregatedRouteMetrics": { "performedShipmentCount": 3, "travelDuration": "1888s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "1200s", "totalDuration": "3088s", "travelDistanceMeters": 6489 }, "usedVehicleCount": 3, "earliestVehicleStartTime": "2023-01-14T00:00:00Z", "latestVehicleEndTime": "2023-01-14T00:18:54Z", "totalCost": 112.14, "costs": { "model.vehicles.cost_per_kilometer": 64.89, "model.global_duration_cost_per_hour": 47.25 } } }
The response contains the following relevant fields:
- The
routesarray now contains three fully-detailed routes, with each vehicle assigned one shipment. - The
metrics.usedVehicleCountis now 3. - The overall solution time (from
earliestVehicleStartTimetolatestVehicleEndTime) is now only 18 minutes and 54 seconds, compared to 28 minutes and 22 seconds in the previous scenario.