In diesem Leitfaden wird gezeigt, wie die Anzahl der Fahrzeuge, die in einer Lösung für die Routenoptimierung bereitgestellt werden, je nach Anfrageparametern variieren kann.
Mit der Route Optimization API wird nicht nur die Reihenfolge der Lieferungen optimiert, sondern sie werden auch Fahrzeugen zugewiesen, um die Kosten unter den von Ihnen verwalteten Einschränkungen zu optimieren.
Im ersten Beispiel entspricht die Anzahl der Fahrzeuge der Anzahl der Sendungen. Alle Fahrzeuge haben dieselben Kosten- und Standorteigenschaften. Für jedes Fahrzeug gibt es Kosten pro Betriebsstunde und Kosten pro gefahrenem Kilometer, die dazu beitragen, Fahrzeit und ‑strecke zu minimieren. Man könnte erwarten, dass mehreren Fahrzeugen Sendungen zugewiesen werden, aber die Beispielantwort zeigt die kostengünstigste Lösung unter Berücksichtigung der angegebenen Kostenmodellparameter.
Beispielanfrage mit mehreren Fahrzeugen
{ "model": { "globalStartTime": "2023-01-13T16:00:00-08:00", "globalEndTime": "2023-01-14T16:00:00-08:00", "shipments": [ { "deliveries": [ { "arrivalLocation": { "latitude": 37.789456, "longitude": -122.390192 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 100.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.789116, "longitude": -122.395080 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 5.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.795242, "longitude": -122.399347 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 50.0 } ], "vehicles": [ { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 50.0, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 50.0, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerHour": 50.0, "costPerKilometer": 10.0 } ] } }
Antwort auf die Anfrage mit mehreren Fahrzeugen ansehen
{ "routes": [ { "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:28:22Z", "visits": [ { "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "shipmentIndex": 2, "isPickup": true, "startTime": "2023-01-14T00:02:30Z", "detour": "150s" }, { "startTime": "2023-01-14T00:08:55Z", "detour": "150s" }, { "shipmentIndex": 2, "startTime": "2023-01-14T00:21:21Z", "detour": "572s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "235s", "travelDistanceMeters": 795, "waitDuration": "0s", "totalDuration": "235s", "startTime": "2023-01-14T00:05:00Z" }, { "travelDuration": "496s", "travelDistanceMeters": 1893, "waitDuration": "0s", "totalDuration": "496s", "startTime": "2023-01-14T00:13:05Z" }, { "travelDuration": "171s", "travelDistanceMeters": 665, "waitDuration": "0s", "totalDuration": "171s", "startTime": "2023-01-14T00:25:31Z" } ], "metrics": { "performedShipmentCount": 2, "travelDuration": "902s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "800s", "totalDuration": "1702s", "travelDistanceMeters": 3353 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 33.53, "model.vehicles.cost_per_hour": 23.638888888888889 }, "routeTotalCost": 57.168888888888887 }, { "vehicleIndex": 1 }, { "vehicleIndex": 2 } ], "skippedShipments": [ { "index": 1 } ], "metrics": { "aggregatedRouteMetrics": { "performedShipmentCount": 2, "travelDuration": "902s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "800s", "totalDuration": "1702s", "travelDistanceMeters": 3353 }, "usedVehicleCount": 1, "earliestVehicleStartTime": "2023-01-14T00:00:00Z", "latestVehicleEndTime": "2023-01-14T00:28:22Z", "totalCost": 62.168888888888887, "costs": { "model.vehicles.cost_per_hour": 23.638888888888889, "model.shipments.penalty_cost": 5, "model.vehicles.cost_per_kilometer": 33.53 } } }
Der Solver weist alle Sendungen nur einem Fahrzeug zu und überspringt eine Sendung, obwohl genügend Fahrzeuge verfügbar sind. Das liegt daran, dass die Kosten für den Betrieb zusätzlicher Fahrzeuge zu hoch sind und es sich für kein Fahrzeug lohnt, die übersprungene Sendung zu liefern, da die Strafkosten niedrig sind.
Trotz verfügbarer Fahrzeugkapazität kann ein Fahrzeug alle zugewiesenen Sendungen am kostengünstigsten ausführen. Für die Fahrzeuge in der Anfrage ist die Property usedIfRouteIsEmpty
nicht festgelegt. Weitere Informationen finden Sie in der Dokumentation zur Vehicle
-Nachricht (REST, gRPC). Daher fallen keine Kosten an, wenn sie nicht verwendet werden.
Wenn Sie die Kostenparameter so ändern, dass global kürzere Lösungen anstelle von einzeln kürzeren Fahrzeugrouten priorisiert werden, sind mehr Fahrzeuge an der Lösung beteiligt. Im nächsten Beispiel wird Vehicle.costPerHour
durch die globale ShipmentModel.globalDurationCostPerHour
ersetzt. Dabei werden Lösungen mit einer kürzeren Gesamtdauer gegenüber der Betriebszeit für ein bestimmtes Fahrzeug priorisiert. Die Strafkosten für shipment[1]
werden ebenfalls erhöht, um die Wahrscheinlichkeit zu verringern, dass sie übersprungen wird.
globalDurationCostPerHour
-Beispielanfrage
{ "model": { "globalStartTime": "2023-01-13T16:00:00-08:00", "globalEndTime": "2023-01-14T16:00:00-08:00", "globalDurationCostPerHour": 150.0, "shipments": [ { "deliveries": [ { "arrivalLocation": { "latitude": 37.789456, "longitude": -122.390192 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 100.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.789116, "longitude": -122.395080 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 75.0 }, { "deliveries": [ { "arrivalLocation": { "latitude": 37.795242, "longitude": -122.399347 }, "duration": "250s" } ], "pickups": [ { "arrivalLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "duration": "150s" } ], "penaltyCost": 50.0 } ], "vehicles": [ { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerKilometer": 10.0 }, { "endLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "startLocation": { "latitude": 37.794465, "longitude": -122.394839 }, "costPerKilometer": 10.0 } ] } }
Das Ergebnis zeigt, dass bei Verwendung des globalen Kostenparameters „Kosten pro Stunde“ alle drei Fahrzeuge anstelle von nur einem verwendet werden.
Antwort auf die Anfrage mit globalDurationCostPerHour
ansehen
{ "routes": [ { "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:16:20Z", "visits": [ { "shipmentIndex": 2, "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "shipmentIndex": 2, "startTime": "2023-01-14T00:09:19Z", "detour": "0s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "409s", "travelDistanceMeters": 1371, "waitDuration": "0s", "totalDuration": "409s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "171s", "travelDistanceMeters": 665, "waitDuration": "0s", "totalDuration": "171s", "startTime": "2023-01-14T00:13:29Z" } ], "metrics": { "performedShipmentCount": 1, "travelDuration": "580s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "400s", "totalDuration": "980s", "travelDistanceMeters": 2036 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 20.36 }, "routeTotalCost": 20.36 }, { "vehicleIndex": 1, "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:18:54Z", "visits": [ { "shipmentIndex": 1, "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "shipmentIndex": 1, "startTime": "2023-01-14T00:08:24Z", "detour": "0s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "354s", "travelDistanceMeters": 1192, "waitDuration": "0s", "totalDuration": "354s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "380s", "travelDistanceMeters": 1190, "waitDuration": "0s", "totalDuration": "380s", "startTime": "2023-01-14T00:12:34Z" } ], "metrics": { "performedShipmentCount": 1, "travelDuration": "734s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "400s", "totalDuration": "1134s", "travelDistanceMeters": 2382 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 23.82 }, "routeTotalCost": 23.82 }, { "vehicleIndex": 2, "vehicleStartTime": "2023-01-14T00:00:00Z", "vehicleEndTime": "2023-01-14T00:16:14Z", "visits": [ { "isPickup": true, "startTime": "2023-01-14T00:00:00Z", "detour": "0s" }, { "startTime": "2023-01-14T00:06:25Z", "detour": "0s" } ], "transitions": [ { "travelDuration": "0s", "waitDuration": "0s", "totalDuration": "0s", "startTime": "2023-01-14T00:00:00Z" }, { "travelDuration": "235s", "travelDistanceMeters": 795, "waitDuration": "0s", "totalDuration": "235s", "startTime": "2023-01-14T00:02:30Z" }, { "travelDuration": "339s", "travelDistanceMeters": 1276, "waitDuration": "0s", "totalDuration": "339s", "startTime": "2023-01-14T00:10:35Z" } ], "metrics": { "performedShipmentCount": 1, "travelDuration": "574s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "400s", "totalDuration": "974s", "travelDistanceMeters": 2071 }, "routeCosts": { "model.vehicles.cost_per_kilometer": 20.71 }, "routeTotalCost": 20.71 } ], "metrics": { "aggregatedRouteMetrics": { "performedShipmentCount": 3, "travelDuration": "1888s", "waitDuration": "0s", "delayDuration": "0s", "breakDuration": "0s", "visitDuration": "1200s", "totalDuration": "3088s", "travelDistanceMeters": 6489 }, "usedVehicleCount": 3, "earliestVehicleStartTime": "2023-01-14T00:00:00Z", "latestVehicleEndTime": "2023-01-14T00:18:54Z", "totalCost": 112.14, "costs": { "model.vehicles.cost_per_kilometer": 64.89, "model.global_duration_cost_per_hour": 47.25 } } }
In dieser Antwort sind alle drei Fahrzeuge im Einsatz (gemäß metrics.usedVehicleCount
). Jedem Fahrzeug wird eine Sendung zugewiesen, die es ausliefern soll. Bei identischen Start- und Zielorten sowie costPerKilometer
sind alle drei Fahrzeuge im Grunde austauschbar. Es spielt also keine Rolle, welche Sendung welchem Fahrzeug zugewiesen wird.
Durch die globalDurationCostPerHour
findet der Optimierer eine insgesamt kürzere Lösung: Der Unterschied zwischen earliestVehicleStartTime
und latestVehicleEndTime
beträgt nur 18 Minuten und 54 Sekunden im Gegensatz zu den 28 Minuten und 22 Sekunden in der vorherigen Antwort. Die metrics.costs.model.vehicles.cost_per_kilometer
ist jedoch gestiegen, was darauf hindeutet, dass die drei verwendeten Fahrzeuge insgesamt mehr Kilometer zurückgelegt haben. Dies ist ein Beispiel dafür, wie Sie mit dem Kostenmodell Kompromisse eingehen können:
- Erhöhte globale Zeitkosten: Die Fahrzeugauslastung wird erhöht, um die Gesamtbearbeitungszeit zu minimieren. Dies geht auf Kosten einer längeren Fahrstrecke und einer längeren Fahrzeit.
- Erhöhte Kosten für die Fahrzeugzeit: Die Fahrzeugauslastung und die Fahrzeit werden reduziert, was zu einer längeren Gesamtlösung führt.
Der globalDurationCostPerHour
-Wert von 150,0 in diesem Beispiel ist dreimal so hoch wie der costPerHour
-Wert von 50,0 für die einzelnen Fahrzeuge aus dem vorherigen Beispiel. Bei diesem globalen Kostenwert wird davon ausgegangen, dass alle drei Fahrzeuge gleichzeitig betrieben werden. In der Praxis sind solche Annahmen jedoch möglicherweise nicht realistisch und können sich sogar negativ auf die Ergebnisqualität auswirken.
Wie unter Parameter des Kostenmodells beschrieben, werden alle Kostenparameter in denselben dimensionslosen Einheiten ausgedrückt, können aber sehr unterschiedliche Bedeutungen haben. In der Regel sollten die Parameterwerte des Kostenmodells so realistisch wie möglich sein, da künstliche Kosten wie in diesem Beispiel dazu führen können, dass die API für Ziele optimiert wird, die nicht Ihrer Intention entsprechen.