
- Доступность набора данных
- 2001-01-01T00:00:00Z–2017-01-01T00:00:00Z
- Поставщик наборов данных
- iSDA
- Теги
Описание
Извлекаемый алюминий на глубине почвы 0-20 см и 20-50 см, прогнозируемое среднее значение и стандартное отклонение.
Значения пикселей должны быть обратно преобразованы с помощью exp(x/10)-1
.
Прогнозы свойств почвы были сделаны компанией Innovative Solutions for Decision Agriculture Ltd. (iSDA) с размером пикселя 30 м с использованием машинного обучения в сочетании с данными дистанционного зондирования и обучающим набором из более чем 100 000 проанализированных образцов почвы.
Дополнительную информацию можно найти в разделе часто задаваемых вопросов и технической документации . Чтобы сообщить о проблеме или запросить поддержку, посетите сайт iSDAsoil .
В районах густых джунглей (как правило, в Центральной Африке) точность модели низкая, поэтому могут быть видны такие артефакты, как полосатость.
Группы
Размер пикселя
30 метров
Группы
Имя | Единицы | Мин. | Макс | Размер пикселя | Описание |
---|---|---|---|---|---|
mean_0_20 | частей на миллион | 3 | 80 | метров | Алюминий, извлекаемый, прогнозируемое среднее на глубине 0–20 см |
mean_20_50 | частей на миллион | 4 | 79 | метров | Алюминий, извлекаемый, прогнозируемое среднее на глубине 20–50 см |
stdev_0_20 | частей на миллион | 1 | 53 | метров | Алюминий, извлекаемый, стандартное отклонение на глубине 0–20 см |
stdev_20_50 | частей на миллион | 1 | 51 | метров | Алюминий, извлекаемый, стандартное отклонение на глубине 20–50 см |
Условия эксплуатации
Условия эксплуатации
Цитаты
Хенгль, Т., Миллер, М.А.Э., Крижан, Дж. и др. Свойства и питательные вещества африканских почв, картированные с пространственным разрешением 30 м с использованием двухмасштабного ансамблевого машинного обучения. Sci Rep 11, 6130 (2021). doi:10.1038/s41598-021-85639-y
Хенгль, Т., Миллер, М.А.Э., Крижан, Дж. и др. Свойства и питательные вещества африканских почв, картированные с пространственным разрешением 30 м с использованием двухмасштабного ансамблевого машинного обучения. Sci Rep 11, 6130 (2021). doi:10.1038/s41598-021-85639-y
DOI
Исследуйте с Earth Engine
Редактор кода (JavaScript)
var mean_0_20 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#000004" label="0-21.2" opacity="1" quantity="31"/>' + '<ColorMapEntry color="#0C0927" label="21.2-35.6" opacity="1" quantity="36"/>' + '<ColorMapEntry color="#231151" label="35.6-53.6" opacity="1" quantity="40"/>' + '<ColorMapEntry color="#410F75" label="53.6-65.7" opacity="1" quantity="42"/>' + '<ColorMapEntry color="#5F187F" label="65.7-72.7" opacity="1" quantity="43"/>' + '<ColorMapEntry color="#7B2382" label="72.7-80.5" opacity="1" quantity="44"/>' + '<ColorMapEntry color="#982D80" label="80.5-89" opacity="1" quantity="45"/>' + '<ColorMapEntry color="#B63679" label="89-98.5" opacity="1" quantity="46"/>' + '<ColorMapEntry color="#D3436E" label="98.5-108.9" opacity="1" quantity="47"/>' + '<ColorMapEntry color="#EB5760" label="108.9-120.5" opacity="1" quantity="48"/>' + '<ColorMapEntry color="#F8765C" label="120.5-133.3" opacity="1" quantity="49"/>' + '<ColorMapEntry color="#FD9969" label="133.3-147.4" opacity="1" quantity="50"/>' + '<ColorMapEntry color="#FEBA80" label="147.4-163" opacity="1" quantity="51"/>' + '<ColorMapEntry color="#FDDC9E" label="163-199.3" opacity="1" quantity="53"/>' + '<ColorMapEntry color="#FCFDBF" label="199.3-1800" opacity="1" quantity="55"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; var mean_20_50 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#000004" label="0-21.2" opacity="1" quantity="31"/>' + '<ColorMapEntry color="#0C0927" label="21.2-35.6" opacity="1" quantity="36"/>' + '<ColorMapEntry color="#231151" label="35.6-53.6" opacity="1" quantity="40"/>' + '<ColorMapEntry color="#410F75" label="53.6-65.7" opacity="1" quantity="42"/>' + '<ColorMapEntry color="#5F187F" label="65.7-72.7" opacity="1" quantity="43"/>' + '<ColorMapEntry color="#7B2382" label="72.7-80.5" opacity="1" quantity="44"/>' + '<ColorMapEntry color="#982D80" label="80.5-89" opacity="1" quantity="45"/>' + '<ColorMapEntry color="#B63679" label="89-98.5" opacity="1" quantity="46"/>' + '<ColorMapEntry color="#D3436E" label="98.5-108.9" opacity="1" quantity="47"/>' + '<ColorMapEntry color="#EB5760" label="108.9-120.5" opacity="1" quantity="48"/>' + '<ColorMapEntry color="#F8765C" label="120.5-133.3" opacity="1" quantity="49"/>' + '<ColorMapEntry color="#FD9969" label="133.3-147.4" opacity="1" quantity="50"/>' + '<ColorMapEntry color="#FEBA80" label="147.4-163" opacity="1" quantity="51"/>' + '<ColorMapEntry color="#FDDC9E" label="163-199.3" opacity="1" quantity="53"/>' + '<ColorMapEntry color="#FCFDBF" label="199.3-1800" opacity="1" quantity="55"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; var stdev_0_20 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="5"/>' + '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="9"/>' + '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="10"/>' + '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="12"/>' + '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="14"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; var stdev_20_50 = '<RasterSymbolizer>' + '<ColorMap type="ramp">' + '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="5"/>' + '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="9"/>' + '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="10"/>' + '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="12"/>' + '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="14"/>' + '</ColorMap>' + '<ContrastEnhancement/>' + '</RasterSymbolizer>'; Map.setCenter(25, -3, 2); var raw = ee.Image("ISDASOIL/Africa/v1/aluminium_extractable"); Map.addLayer( raw.select(0).sldStyle(mean_0_20), {}, "Aluminium, extractable, mean visualization, 0-20 cm"); Map.addLayer( raw.select(1).sldStyle(mean_20_50), {}, "Aluminium, extractable, mean visualization, 20-50 cm"); Map.addLayer( raw.select(2).sldStyle(stdev_0_20), {}, "Aluminium, extractable, stdev visualization, 0-20 cm"); Map.addLayer( raw.select(3).sldStyle(stdev_20_50), {}, "Aluminium, extractable, stdev visualization, 20-50 cm"); var converted = raw.divide(10).exp().subtract(1); Map.addLayer( converted.select(0), {min: 0, max: 100}, "Aluminium, extractable, mean, 0-20 cm");