Atualizámos a nossa documentação com as funcionalidades e atualizações mais recentes introduzidas por duas novas experiências do Ads Data Hub. Anunciantes, agências e publicadores, consultem o site de Profissionais de marketing. Fornecedores e parceiros, consultem o site de Parceiros de medição.
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
As auditorias do histórico de consultas permitem gerar um relatório de todas as tarefas executadas com a conta do Ads Data Hub. Isto permite determinar, por exemplo, quem acedeu aos seus dados e quando o fizeram.
As auditorias do histórico de consultas são escritas como tabelas do BigQuery que contêm entradas do registo para todas as consultas executadas com a conta do Ads Data Hub. Para ver as auditorias do histórico de consultas da conta, primeiro precisa de gerar o relatório através de uma API. Cada registo de auditoria contém dados relativos a 1 dia. Pode gerar um registo de auditoria para qualquer dia nos últimos 30 dias.
As auditorias do histórico de consultas usam o seguinte esquema:
Nome do campo
Descrição
customer_id
O ID de cliente do Ads Data Hub
ads_customer_id
O ID da subconta, se usada (caso contrário, será igual a customer_id)
match_table_customer_id
O ID da conta que contém a tabela de correspondência, se usada (caso contrário, será igual a customer_id)
user_email
O endereço de email do utilizador que executou a consulta
query_start_time
A hora em que a consulta começou a ser executada
query_end_time
A hora em que a consulta terminou
query_type
Distingue entre consultas de análise e consultas de públicos-alvo
query_resource_id
O ID associado à consulta
query_text
O SQL da consulta
query_parameters
query_parameters.name
O nome do parâmetro da consulta
query_parameters.value
O valor transmitido através do parâmetro da consulta line_merge_summary
row_merge_summary.column_name
O nome da coluna
row_merge_summary.merge_type
O tipo de resumo da união de linhas
row_merge_summary.constant_value
O valor do conjunto de constantes (será nulo se não for usada uma constante)
destination_table
A localização (no BigQuery) na qual a consulta foi escrita
Aceder às auditorias do histórico de consultas
Para aceder às auditorias do histórico de consultas, precisa de chamar a API. Consulte o exemplo de código para chamar a API abaixo ou veja a documentação de referência e escreva a sua própria consulta.
Os resultados do pedido API serão escritos no conjunto de dados do BigQuery especificado no corpo do pedido API.
"""This sample shows how to create a query history audit.
For the program to execute successfully, ensure that you run it using Python 3.
"""
from __future__ import print_function
from json import dumps
from google_auth_oauthlib import flow
from googleapiclient.discovery import build
appflow = flow.InstalledAppFlow.from_client_secrets_file(
# Replace client_secrets.json with your own client secret file.
'client_secrets.json',
scopes=['https://www.googleapis.com/auth/adsdatahub'])
appflow.run_local_server()
credentials = appflow.credentials
developer_key = input('Developer key: ').strip()
service = build('adsdatahub', 'v1', credentials=credentials,
developerKey=developer_key)
def pprint(x):
print(dumps(x, sort_keys=True, indent=4))
customer_id = input('Customer ID (e.g. "customers/123"): ').strip()
bq_project = input('Destination BigQuery project ID (e.g. "your-project"): ').strip()
dataset_id = input('Destination BigQuery dataset (e.g. "your-dataset"): ').strip()
start = input('The start date for your query history audit. Formatted as "mm/dd/yyyy": ').strip().split('/')
end = input('The end date for your query history audit. Should be 1 day later than start_date. Formatted as "mm/dd/yyyy": ').strip().split('/')
choice = input("Do you want to enter a timezone? Defaults to UTC otherwise. (y/n) ")
if choice.lower() == 'y':
timezone = input("Timezone (e.g. 'UTC'): ")
else:
timezone = 'UTC'
body = {
'project_id': bq_project,
'dataset': dataset_id,
'start_date': {
'year': start[2],
'day': start[1],
'month': start[0]
},
'end_date': {
'year': end[2],
'day': end[1],
'month': end[0]
},
'time_zone': timezone
}
pprint(service.customers().exportJobHistory(customer=customer_id, body=body).execute())
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Não contém as informações de que eu preciso","missingTheInformationINeed","thumb-down"],["Muito complicado / etapas demais","tooComplicatedTooManySteps","thumb-down"],["Desatualizado","outOfDate","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Problema com as amostras / o código","samplesCodeIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2024-02-13 UTC."],[[["\u003cp\u003eQuery history audits provide a report of all Ads Data Hub jobs, detailing who accessed data and when.\u003c/p\u003e\n"],["\u003cp\u003eThese audits are stored as BigQuery tables, accessible to superusers, and contain one day's worth of data for the past 30 days.\u003c/p\u003e\n"],["\u003cp\u003eEach audit log entry includes information like user email, query start/end times, query text, and destination table.\u003c/p\u003e\n"],["\u003cp\u003eAccessing audit logs requires calling the Ads Data Hub API and specifying a BigQuery dataset for the results.\u003c/p\u003e\n"],["\u003cp\u003eThe provided Python code sample demonstrates how to create a query history audit using the API.\u003c/p\u003e\n"]]],["Query history audits log all jobs run in an Ads Data Hub account, providing details like user access and timing. Accessible via an API for superusers only, these audits generate daily reports for the past 30 days. Reports, structured as BigQuery tables, include fields like `user_email`, `query_start_time`, and `query_text`. Accessing audits requires an API call specifying the destination BigQuery dataset, start and end dates (end date being 1 day later), and project details.\n"],null,["# View query history audits\n\nQuery history audits allow you to generate a report of all jobs run using your Ads Data Hub account. This allows you to answer questions relating to who accessed your data and when they did it.\n\nQuery history audits are written as BigQuery tables containing log entries for all queries run using your Ads Data Hub account. To view query history audits for your account, you need to first generate the report via an API. Each audit log contains 1 day's worth of data. You can generate an audit log for any day within the past 30 days.\n\nQuery history audits are only available to superusers. [Learn more about role-based access](/ads-data-hub/guides/assign-access-by-role)\n\nQuery history audit format\n--------------------------\n\nEach query history audit uses the following schema:\n\n| Field name | Description |\n|----------------------------------|--------------------------------------------------------------------------------------------------------|\n| customer_id | The Ads Data Hub customer ID |\n| ads_customer_id | The ID of the sub-account, if used (will be identical to customer_id otherwise) |\n| match_table_customer_id | The ID of the account containing the match table, if used (will be identical to customer_id otherwise) |\n| user_email | Email address of the user who ran the query |\n| query_start_time | The time the query began running |\n| query_end_time | The time the query finished running |\n| query_type | Differentiates between analysis queries and audience queries |\n| query_resource_id | The ID associated with the query |\n| query_text | The query's SQL |\n| query_parameters | |\n| query_parameters.name | The name of the query's parameter |\n| query_parameters.value | The value passed via the query's parameter row_merge_summary |\n| row_merge_summary.column_name | The name of column |\n| row_merge_summary.merge_type | The type of row merge summary |\n| row_merge_summary.constant_value | The value of the constant set (will be null if no constant is used) |\n| destination_table | The location (in BigQuery) that the query was written to |\n\nAccessing query history audits\n------------------------------\n\nIn order to access the query history audits, you'll need to call the API. Find sample code for calling the API below, or [view the reference documentation](/ads-data-hub/reference/rest) and write your own query.\n\nThe results of the API request will be written to the BigQuery dataset that you specify in the body of the API request.\n**Note:** As query history audits are currently available for a single day's worth of data, the end date needs to be 1 day after the start date. \n\n\n \"\"\"This sample shows how to create a query history audit.\n\n For the program to execute successfully, ensure that you run it using Python 3.\n \"\"\"\n\n from __future__ import print_function\n from json import dumps\n from google_auth_oauthlib import flow\n from googleapiclient.discovery import build\n\n appflow = flow.InstalledAppFlow.from_client_secrets_file(\n # Replace client_secrets.json with your own client secret file.\n 'client_secrets.json',\n scopes=['https://www.googleapis.com/auth/adsdatahub'])\n appflow.run_local_server()\n credentials = appflow.credentials\n developer_key = input('Developer key: ').strip()\n service = build('adsdatahub', 'v1', credentials=credentials,\n developerKey=developer_key)\n\n def pprint(x):\n print(dumps(x, sort_keys=True, indent=4))\n\n customer_id = input('Customer ID (e.g. \"customers/123\"): ').strip()\n bq_project = input('Destination BigQuery project ID (e.g. \"your-project\"): ').strip()\n dataset_id = input('Destination BigQuery dataset (e.g. \"your-dataset\"): ').strip()\n start = input('The start date for your query history audit. Formatted as \"mm/dd/yyyy\": ').strip().split('/')\n end = input('The end date for your query history audit. Should be 1 day later than start_date. Formatted as \"mm/dd/yyyy\": ').strip().split('/')\n\n choice = input(\"Do you want to enter a timezone? Defaults to UTC otherwise. (y/n) \")\n\n if choice.lower() == 'y':\n timezone = input(\"Timezone (e.g. 'UTC'): \")\n else:\n timezone = 'UTC'\n\n body = {\n 'project_id': bq_project,\n 'dataset': dataset_id,\n 'start_date': {\n 'year': start[2],\n 'day': start[1],\n 'month': start[0]\n },\n 'end_date': {\n 'year': end[2],\n 'day': end[1],\n 'month': end[0]\n },\n 'time_zone': timezone\n }\n\n pprint(service.customers().exportJobHistory(customer=customer_id, body=body).execute())"]]