步驟 6:部署模型
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
您可以在 Google Cloud 中訓練、調整及部署機器學習模型。部署模型時,請注意以下重要事項:
- 請確保實際工作環境資料與訓練和評估資料的分佈相同。
- 收集更多訓練資料,定期重新評估。
- 如果您的資料分佈變動,請重新訓練模型。
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2024-06-25 (世界標準時間)。
[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["缺少我需要的資訊","missingTheInformationINeed","thumb-down"],["過於複雜/步驟過多","tooComplicatedTooManySteps","thumb-down"],["過時","outOfDate","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["示例/程式碼問題","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2024-06-25 (世界標準時間)。"],[[["Google Cloud provides a platform for training, tuning, and deploying machine learning models."],["Maintaining data consistency between training, evaluation, and production is crucial for optimal model performance."],["Continuous model improvement involves regular data collection, reevaluation, and retraining to adapt to evolving data distributions."]]],[]]