文字分類是基本的機器學習問題,可應用於各種產品。在本指南中,我們將文字分類工作流程分成幾個步驟。針對每個步驟,我們根據特定資料集的特徵,建議採用客製化方法。具體來說,我們會根據樣本數與每個樣本的字數比率,建議能快速達到最佳成效的模型類型。其他步驟都是根據這項選擇設計。我們希望透過本指南、隨附程式碼和流程圖,協助您瞭解並快速找出文字分類問題的初步解決方案。
結語
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-07-27 (世界標準時間)。
[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["缺少我需要的資訊","missingTheInformationINeed","thumb-down"],["過於複雜/步驟過多","tooComplicatedTooManySteps","thumb-down"],["過時","outOfDate","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["示例/程式碼問題","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-07-27 (世界標準時間)。"],[[["This guide provides a structured workflow for text classification, breaking it down into manageable steps tailored to your dataset's characteristics."],["Model selection is guided by the ratio of samples to words per sample, helping you quickly identify a suitable model for optimal performance."],["The guide includes code and a flowchart to facilitate learning, understanding, and implementing a first-cut solution for your text classification problem."]]],[]]