생성적 적대 신경망 (GAN)은 머신러닝의 최근 혁신 기술입니다. GAN은 생성형 모델입니다. 학습 데이터와 유사한 새 데이터 인스턴스를 만듭니다. 예를 들어 GAN은 실제 사람의 얼굴이 아니더라도 사람 얼굴 사진처럼 보이는 이미지를 만들 수 있습니다. 다음 이미지는 GAN으로 생성되었습니다.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["필요한 정보가 없음","missingTheInformationINeed","thumb-down"],["너무 복잡함/단계 수가 너무 많음","tooComplicatedTooManySteps","thumb-down"],["오래됨","outOfDate","thumb-down"],["번역 문제","translationIssue","thumb-down"],["샘플/코드 문제","samplesCodeIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-02-26(UTC)"],[[["Generative adversarial networks (GANs) are generative models that create new data instances resembling training data, such as images that look like real photographs but are not of actual people."],["GANs consist of a generator that learns to produce the target output and a discriminator that learns to distinguish real data from generated data, working in tandem to enhance the realism of the output."],["This course covers GAN fundamentals, common GAN loss functions, training challenges, and using the TF-GAN library to build GANs, assuming prior knowledge of machine learning and TensorFlow."],["Completing Machine Learning Crash Course and having some TensorFlow programming experience are prerequisites for this GANs course."]]],[]]