[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["没有我需要的信息","missingTheInformationINeed","thumb-down"],["太复杂/步骤太多","tooComplicatedTooManySteps","thumb-down"],["内容需要更新","outOfDate","thumb-down"],["翻译问题","translationIssue","thumb-down"],["示例/代码问题","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2024-08-13。"],[[["Like sorting good apples from bad, ML engineers spend significant time cleaning data by removing or fixing bad examples to improve dataset quality."],["Common data problems include omitted values, duplicate examples, out-of-range values, and incorrect labels, which can negatively impact model performance."],["You can use programs or scripts to identify and handle data issues such as omitted values, duplicates, and out-of-range feature values by removing or correcting them."],["When multiple individuals label data, it's important to check for consistency and identify potential biases to ensure label quality."],["Addressing data quality issues before training a model leads to better model accuracy and overall performance."]]],[]]