Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Avaliar um modelo de machine learning (ML) de forma responsável requer mais do que
apenas calcular as métricas de perda geral. Antes de colocar um modelo em produção,
é fundamental auditar os dados de treinamento e avaliar as previsões em busca de
viés.
Este módulo analisa diferentes tipos de vieses humanos que podem se manifestar nos
dados de treinamento. Ele fornece estratégias para identificá-los e mitigá-los
e, em seguida, avaliar a performance do modelo com imparcialidade.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Não contém as informações de que eu preciso","missingTheInformationINeed","thumb-down"],["Muito complicado / etapas demais","tooComplicatedTooManySteps","thumb-down"],["Desatualizado","outOfDate","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Problema com as amostras / o código","samplesCodeIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-07-27 UTC."],[[["\u003cp\u003eThis module focuses on identifying and mitigating human biases that can negatively impact machine learning models.\u003c/p\u003e\n"],["\u003cp\u003eYou'll learn how to proactively examine data for potential bias before model training and how to evaluate your model's predictions for fairness.\u003c/p\u003e\n"],["\u003cp\u003eThe module explores various types of human biases that can unintentionally be replicated by machine learning algorithms, emphasizing responsible AI development.\u003c/p\u003e\n"],["\u003cp\u003eIt builds upon foundational machine learning knowledge, including linear and logistic regression, classification, and handling numerical and categorical data.\u003c/p\u003e\n"]]],[],null,["# Fairness\n\n| **Estimated module length:** 110 minutes\n\nEvaluating a machine learning model (ML) responsibly requires doing more than\njust calculating overall loss metrics. Before putting a model into production,\nit's critical to audit training data and evaluate predictions for\n[bias](/machine-learning/glossary#bias-ethicsfairness).\n\nThis module looks at different types of human biases that can manifest in\ntraining data. It then provides strategies to identify and mitigate them,\nand then evaluate model performance with fairness in mind.\n| **Learning objectives**\n|\n| - Become aware of common human biases that can inadvertently be reproduced by ML algorithms.\n| - Proactively explore data to identify sources of bias before training a model.\n| - Evaluate model predictions for bias.\n| **Prerequisites:**\n|\n| This module assumes you are familiar with the concepts covered in the\n| following modules:\n|\n| - [Introduction to Machine Learning](/machine-learning/intro-to-ml)\n| - [Linear regression](/machine-learning/crash-course/linear-regression)\n| - [Logistic regression](/machine-learning/crash-course/logistic-regression)\n| - [Classification](/machine-learning/crash-course/classification)\n| - [Working with numerical data](/machine-learning/crash-course/numerical-data)\n| - [Working with categorical data](/machine-learning/crash-course/categorical-data)\n- [Datasets, generalization, and overfitting](/machine-learning/crash-course/overfitting) \n| **Key terms:**\n|\n| - [Bias (ethics/fairness)](/machine-learning/glossary#bias-ethicsfairness)\n- [Model](/machine-learning/glossary#model) \n[Help Center](https://support.google.com/machinelearningeducation)"]]