Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
Bir makine öğrenimi modelini (ML) sorumlu bir şekilde değerlendirmek için yalnızca genel kayıp metriklerini hesaplamaktan daha fazlasını yapmak gerekir. Bir modeli üretime koymadan önce eğitim verilerini denetlemek ve tahminleri eğilim açısından değerlendirmek önemlidir.
Bu modülde, eğitim verilerinde ortaya çıkabilecek farklı insan önyargı türleri ele alınmaktadır. Ardından, bu önyargıları tespit edip azaltmak ve model performansını adaleti göz önünde bulundurarak değerlendirmek için stratejiler sunar.
[[["Anlaması kolay","easyToUnderstand","thumb-up"],["Sorunumu çözdü","solvedMyProblem","thumb-up"],["Diğer","otherUp","thumb-up"]],[["İhtiyacım olan bilgiler yok","missingTheInformationINeed","thumb-down"],["Çok karmaşık / çok fazla adım var","tooComplicatedTooManySteps","thumb-down"],["Güncel değil","outOfDate","thumb-down"],["Çeviri sorunu","translationIssue","thumb-down"],["Örnek veya kod sorunu","samplesCodeIssue","thumb-down"],["Diğer","otherDown","thumb-down"]],["Son güncelleme tarihi: 2025-07-27 UTC."],[[["\u003cp\u003eThis module focuses on identifying and mitigating human biases that can negatively impact machine learning models.\u003c/p\u003e\n"],["\u003cp\u003eYou'll learn how to proactively examine data for potential bias before model training and how to evaluate your model's predictions for fairness.\u003c/p\u003e\n"],["\u003cp\u003eThe module explores various types of human biases that can unintentionally be replicated by machine learning algorithms, emphasizing responsible AI development.\u003c/p\u003e\n"],["\u003cp\u003eIt builds upon foundational machine learning knowledge, including linear and logistic regression, classification, and handling numerical and categorical data.\u003c/p\u003e\n"]]],[],null,["# Fairness\n\n| **Estimated module length:** 110 minutes\n\nEvaluating a machine learning model (ML) responsibly requires doing more than\njust calculating overall loss metrics. Before putting a model into production,\nit's critical to audit training data and evaluate predictions for\n[bias](/machine-learning/glossary#bias-ethicsfairness).\n\nThis module looks at different types of human biases that can manifest in\ntraining data. It then provides strategies to identify and mitigate them,\nand then evaluate model performance with fairness in mind.\n| **Learning objectives**\n|\n| - Become aware of common human biases that can inadvertently be reproduced by ML algorithms.\n| - Proactively explore data to identify sources of bias before training a model.\n| - Evaluate model predictions for bias.\n| **Prerequisites:**\n|\n| This module assumes you are familiar with the concepts covered in the\n| following modules:\n|\n| - [Introduction to Machine Learning](/machine-learning/intro-to-ml)\n| - [Linear regression](/machine-learning/crash-course/linear-regression)\n| - [Logistic regression](/machine-learning/crash-course/logistic-regression)\n| - [Classification](/machine-learning/crash-course/classification)\n| - [Working with numerical data](/machine-learning/crash-course/numerical-data)\n| - [Working with categorical data](/machine-learning/crash-course/categorical-data)\n- [Datasets, generalization, and overfitting](/machine-learning/crash-course/overfitting) \n| **Key terms:**\n|\n| - [Bias (ethics/fairness)](/machine-learning/glossary#bias-ethicsfairness)\n- [Model](/machine-learning/glossary#model) \n[Help Center](https://support.google.com/machinelearningeducation)"]]