[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["缺少我需要的資訊","missingTheInformationINeed","thumb-down"],["過於複雜/步驟過多","tooComplicatedTooManySteps","thumb-down"],["過時","outOfDate","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["示例/程式碼問題","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2024-11-06 (世界標準時間)。"],[[["Categorical data quality hinges on how categories are defined and labeled, impacting data reliability."],["Human-labeled data, known as \"gold labels,\" is generally preferred for training due to its higher quality, but it's essential to check for human errors and biases."],["Machine-labeled data, or \"silver labels,\" can introduce biases or inaccuracies, necessitating careful quality checks and awareness of potential common-sense violations."],["High-dimensionality in categorical data increases training complexity and costs, leading to techniques like embeddings for dimensionality reduction."]]],[]]