[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["缺少我需要的資訊","missingTheInformationINeed","thumb-down"],["過於複雜/步驟過多","tooComplicatedTooManySteps","thumb-down"],["過時","outOfDate","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["示例/程式碼問題","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-02-25 (世界標準時間)。"],[[["The k-means clustering algorithm groups data points into clusters by minimizing the distance between each point and its cluster's centroid."],["K-means is efficient, scaling as O(nk), making it suitable for large datasets in machine learning, unlike hierarchical clustering methods."],["The algorithm iteratively refines clusters by recalculating centroids and reassigning points until convergence or a stopping criteria is met."],["Due to random initialization, k-means can produce varying results; running it multiple times and selecting the best outcome based on quality metrics is recommended."],["K-means assumes data is composed of circular distributions, which may not be accurate for all real-world data containing outliers or density-based clusters."]]],[]]