
- Dataset Availability
- 2022-01-01T00:00:00Z–2023-01-01T00:00:00Z
- Dataset Provider
- USDA Forest Service (USFS) Field Services and Innovation Center Geospatial Office (FSIC-GO)
- Tags
Description
This product is part of the TreeMap data suite. It provides detailed spatial information on forest characteristics including number of live and dead trees, biomass, and carbon across the entire forested extent of the United States in 2022.
TreeMap v2022 contains 22-band 30 x 30m resolution gridded map images per study area, of the forests of the United States circa 2022, with each band representing an attribute derived from select Forest Inventory Analysis (FIA) data (and one band representing the TreeMap ID). Examples of attributes include forest type, canopy cover percent, live tree stocking, live/dead tree biomass, and carbon in live/dead trees.
TreeMap products are the output of a random forest machine learning algorithm that assigns the most similar FIA plot to each pixel of gridded LANDFIRE input data. The objective is to combine the complimentary strengths of detailed-but-spatially-sparse FIA data with less-detailed-but-spatially- comprehensive LANDFIRE data to produce better estimations of forest characteristics at a variety of scales. TreeMap is being used in both the private and public sectors for projects including fuel treatment planning, snag hazard mapping, and estimation of terrestrial carbon resources.
TreeMap is distinct from other imputed forest vegetation products in that it provides an FIA plot identifier to each pixel whereas other datasets provide forest characteristics such as live basal area (e.g., Ohmann and Gregory 2002; Pierce Jr et al. 2009; Wilson, Lister, and Riemann 2012). The FIA plot identifier can be linked to the hundreds of variables and attributes recorded for each tree and plot in the FIA DataMart, FIA's public repository of plot information (Forest Inventory Analysis 2022a).
The TreeMap 2022 CONUS dataset featured here updates the TreeMap 2016 dataset to landscape conditions circa 2022 and updates the methods by: 1) using a different suite of climate variables in the imputation and 2) improving species composition assignments to prevent plots being imputed to areas where their existing vegetation type was not present, an issue which affected a small number of pixels in previous TreeMap versions.
TreeMap v2022 was produced using the methods described in Riley et al. (2022) but differ from TreeMap v2016 in that: 1) the climatic variables were obtained from DayMet and included precipitation, shortwave radiation, soil water equivalent, maximum temperature, minimum temperature, vapor pressure, and vapor pressure deficit; and 2) plots available for imputation in each LANDFIRE zone were limited to those plots with a tree species that were present either in the plots found within the LANDFIRE zone, or in the zones immediately bordering it, according to the FIA plots located within the zone. This reduced not only plots with Existing Vegetation Type not present in the zone but also plots with trees outside of their observed range.
The results showed good correspondence between the target LANDFIRE data and the imputed plot data, with an overall within-class agreement of 94.3% for forest cover, 99.0% for forest height, 95.6% for vegetation group, and 95.5% for disturbance code. Of 69,800 single-condition FIA plots available to Random Forest, 64,745 of these (92.7%) were utilized in the imputation to 2,687,805,994 forested pixels.
Additional Resources
Please see the TreeMap 2016 Publication for more detailed information regarding methods and accuracy assessment.
The TreeMap Data Explorer is a web-based application that provides users the ability to view and download TreeMap attribute data.
Visit the TreeMap Research Data Archive for the full dataset download, metadata, and support documents.
Visit the TreeMap Raster Data Gateway for TreeMap attribute data downloads, metadata, and support documents.
See the FIA Database Manual version 9.3 for more detailed information on the attributes included in TreeMap 2020.
The Treemap 2016 vintage contains landscape conditions of the forests of the United States circa 2016.
The Treemap 2020 vintage contains landscape conditions of the forests of the United States circa 2020.
Contact sm.fs.treemaphelp@usda.gov with any questions or specific data requests.
Bands
Pixel Size
30 meters
Bands
Name | Units | Pixel Size | Description |
---|---|---|---|
ALSTK |
% | meters | All-Live-Tree Stocking. The sum of stocking percent values of all live trees on the condition. |
BALIVE |
ft^2/acre | meters | Live Tree Basal Area. Basal area in square feet per acre of all live trees ≥1.0 inch d.b.h./d.r.c. sampled in the condition. |
CANOPYPCT |
% | meters | Live Canopy Cover. Derived from the Forest Vegetation Simulator. |
CARBON_D |
tons/acre | meters | Carbon, Standing Dead. Calculated via the following FIA query: Sum (DRYBIO_BOLE, DRYBIO_TOP, DRYBIO_STUMP, DRYBIO_SAPLING, DRYBIO_WDLD_SPP) / 2 /2000*TPA_UNADJ WHERE (((COND.COND_STATUS_CD)=1) AND ((TREE.STATUSCD)=2) AND ((TREE.DIA)>=5) AND ((TREE.STANDING_DEAD_CD)=1)) |
CARBON_DWN |
tons/acre | meters | Carbon, Down Dead. Carbon (tons per acre) of woody material >3 inches in diameter on the ground, and stumps and their roots >3 inches in diameter. Estimated from models based on geographic area, forest type, and live tree carbon density (Smith and Heath 2008). |
CARBON_L |
tons/acre | meters | Carbon, Live Above Ground. Calculated via the following FIA query: Sum (DRYBIO_BOLE, DRYBIO_TOP, DRYBIO_STUMP, DRYBIO_SAPLING, DRYBIO_WDLD_SPP) / 2 /2000*TPA_UNADJ WHERE (((COND.COND_STATUS_CD)=1) AND ((TREE.STATUSCD)=1)) |
DRYBIO_D |
tons/acre | meters | Dry Standing Dead Tree Biomass, Above Ground. Calculated via the following FIA query: Sum (DRYBIO_BOLE, DRYBIO_TOP, DRYBIO_STUMP, DRYBIO_SAPLING, DRYBIO_WDLD_SPP) /2000*TPA_UNADJ WHERE (((COND.COND_STATUS_CD)=1) AND ((TREE.STATUSCD)=2) AND ((TREE.DIA)>=5) AND ((TREE.STANDING_DEAD_CD)=1)) |
DRYBIO_L |
tons/acre | meters | Dry Live Tree Biomass, Above Ground. Calculated via the following FIA query: Sum (DRYBIO_BOLE, DRYBIO_TOP, DRYBIO_STUMP, DRYBIO_SAPLING, DRYBIO_WDLD_SPP) /2000*TPA_UNADJ WHERE (((COND.COND_STATUS_CD)=1) AND ((TREE.STATUSCD)=1)) |
FLDSZCD |
meters | Field Stand-Size Class Code - Field-assigned classification of the predominant (based on stocking) diameter class of live trees within the condition. |
|
FLDTYPCD |
meters | Field Forest Type Code - A code indicating the forest type, assigned by the field crew, based on the tree species or species groups forming a plurality of all live stocking. The field crew assesses the forest type based on the acre of forest land around the plot, in addition to the species sampled on the condition. |
|
FORTYPCD |
meters | Algorithm Forest Type Code - This is the forest type used for reporting purposes. It is primarily derived using a computer algorithm, except when less than 25 percent of the plot samples a particular forest condition or in a few other cases. |
|
GSSTK |
% | meters | Growing-Stock Stocking. The sum of stocking percent values of all growing-stock trees on the condition. |
QMD |
in | meters | Stand Quadratic Mean Diameter. The quadratic mean diameter, or the diameter of the tree of average basal area, on the condition. Based on live trees ≥1.0 inch d.b.h./d.r.c. |
SDIsum |
Dimensionless | meters | Sum of Stand Density Index. Stand density index (SDI). A relative measure of stand density for live trees (greater than or equal to 1.0 inch d.b.h./d.r.c.) on the condition, expressed as a sum of the maximum stand density index (SDI). |
STANDHT |
ft | meters | Height of dominant trees. Derived from the Forest Vegetation Simulator. |
STDSZCD |
meters | Algorithm Stand-Size Class Code - A classification of the predominant (based on stocking) diameter class of live trees within the condition assigned using an algorithm. |
|
TPA_DEAD |
count/acre | meters | Dead Trees Per Acre. Number of dead standing trees per acre (DIA >= 5”). Calculated via the following FIA query: Sum TREE.TPA_UNADJ WHERE (((COND.COND_STATUS_CD)=1) AND ((TREE.STATUSCD)=2) AND ((TREE.DIA)>=5) AND ((TREE.STANDING_DEAD_CD)=1)) |
TPA_LIVE |
count/acre | meters | Live Trees Per Acre. Number of live trees per acre (DIA > 1"). Calculated via the following FIA query: Sum TREE.TPA_UNADJ WHERE (((COND.COND_STATUS_CD)=1) AND ((TREE.STATUSCD)=1) AND ((TREE.DIA)>=1)) |
TM_ID |
Dimensionless | meters | Raw TreeMap identifier dataset values. This dataset is useful to see spatial groupings of individual modeled plot values. |
VOLBFNET_L |
sawlog-board-ft/acre | meters | Volume, Live (log rule: Int’l ¼ inch). Calculated via the following FIA query: Sum VOLBFNET * TPA_UNADJ WHERE (((TREE.TREECLCD)=2) AND ((COND.COND_STATUS_CD)=1) AND ((TREE.STATUSCD)=1)) |
VOLCFNET_D |
ft^3/acre | meters | Volume, Standing Dead. Calculated via the following FIA query: Sum VOLCFNET*TPA_UNADJ WHERE (((COND.COND_STATUS_CD)=1) AND ((TREE.STATUSCD)=2) AND ((TREE.DIA)>=5) AND ((TREE.STANDING_DEAD_CD)=1)) |
VOLCFNET_L |
ft^3/acre | meters | Volume, Live. Calculated via the following FIA query: Sum VOLCFNET*TPA_UNADJ WHERE (((COND.COND_STATUS_CD)=1) AND ((TREE.STATUSCD)=1)) |
FLDSZCD Class Table
Value | Color | Description |
---|---|---|
0 | #c62363 | Nonstocked - Meeting the definition of accessible land and one of the following applies (1) less than 10 percent stocked by trees, seedlings, and saplings and not classified as cover trees, or (2) for several woodland species where stocking standards are not available, less than 10 percent canopy cover of trees, seedlings, and saplings. |
1 | #feba12 | ≤4.9 inches (seedlings/saplings). At least 10 percent stocking (or 10 percent canopy cover if stocking standards are not available) in trees, seedlings, and saplings, and at least 2/3 of the canopy cover is in trees less than 5.0 inches d.b.h./d.r.c. |
2 | #ffff00 | 5.0-8.9 inches (softwoods)/ 5.0-10.9 inches (hardwoods). At least 10 percent stocking (or 10 percent canopy cover if stocking standards are not available) in trees, seedlings, and saplings; and at least one-third of the canopy cover is in trees greater than 5.0 inches d.b.h./d.r.c. and the plurality of the canopy cover is in softwoods 5.0-8.9 inches diameter and/or hardwoods 5.0-10.9 inches d.b.h., and/or woodland trees 5.0-8.9 inches d.r.c. |
3 | #38a800 | 9.0-19.9 inches (softwoods)/ 11.0-19.9 inches (hardwoods). At least 10 percent stocking (or 10 percent canopy cover if stocking standards are not available) in trees, seedlings, and sapling; and at least one-third of the canopy cover is in trees greater than 5.0 inches d.b.h./d.r.c. and the plurality of the canopy cover is in softwoods 9.0-19.9 inches diameter and/or hardwoods between 11.0-19.9 inches d.b.h., and/or woodland trees 9.0-19.9 inches d.r.c. |
4 | #73dfff | 20.0-39.9 inches. At least 10 percent stocking (or 10 percent canopy cover if stocking standards are not available) in trees, seedlings, and saplings; and at least one-third of the canopy cover is in trees greater than 5.0 inches d.b.h./d.r.c. and the plurality of the canopy cover is in trees 20.0-39.9 inches d.b.h. |
5 | #5c09fc | 40.0+ inches. At least 10 percent stocking (or 10 percent canopy cover if stocking standards are not available) in trees, seedlings, and saplings; and at least one-third of the canopy cover is in trees greater than 5.0 inches d.b.h./d.r.c. and the plurality of the canopy cover is in trees greater than or equal to 40.0 inches d.b.h. |
FLDTYPCD Class Table
Value | Color | Description |
---|---|---|
101 | #6e26ec | Jack pine |
102 | #c765ec | Red pine |
103 | #efdbcc | Eastern white pine |
104 | #a8a9f2 | Eastern white pine / eastern hemlock |
105 | #d0ce83 | Eastern hemlock |
121 | #47d0b6 | Balsam fir |
122 | #9d86a6 | White spruce |
123 | #a5f77a | Red spruce |
124 | #dcf4d9 | Red spruce / balsam fir |
125 | #64e1f7 | Black spruce |
126 | #afa9b0 | Tamarack |
127 | #f2c531 | Northern white-cedar |
128 | #87cc75 | Fraser fir |
141 | #84d7eb | Longleaf pine |
142 | #ef4677 | Slash pine |
161 | #97f2ad | Loblolly pine |
162 | #d45549 | Shortleaf pine |
163 | #63f3ac | Virginia pine |
164 | #f58de4 | Sand pine |
165 | #e9c991 | Table Mountain pine |
166 | #ddbef2 | Pond pine |
167 | #bba847 | Pitch pine |
171 | #95eacd | Eastern redcedar |
182 | #a6827b | Rocky Mountain juniper |
184 | #bca28a | Juniper woodland |
185 | #cff3f4 | Pinyon / juniper woodland |
201 | #c1ded5 | Douglas-fir |
202 | #948ee9 | Port-Orford-cedar |
221 | #d0ef5b | Ponderosa pine |
222 | #e29af0 | Incense-cedar |
224 | #c34bc3 | Sugar pine |
225 | #e6acb8 | Jeffrey pine |
226 | #ea3b34 | Coulter pine |
241 | #724353 | Western white pine |
261 | #f2c7a0 | White fir |
262 | #6ab27f | Red fir |
263 | #f1f3d3 | Noble fir |
264 | #ea5aba | Pacific silver fir |
265 | #edc7e1 | Engelmann spruce |
266 | #4965e2 | Engelmann spruce / subalpine fir |
267 | #a0f4c4 | Grand fir |
268 | #5697de | Subalpine fir |
269 | #5defc4 | Blue spruce |
270 | #e8f384 | Mountain hemlock |
271 | #cc63bd | Alaska-yellow-cedar |
281 | #e16f3d | Lodgepole pine |
301 | #f5da68 | Western hemlock |
304 | #a63bcf | Western redcedar |
305 | #51d0dd | Sitka spruce |
321 | #6bc5b6 | Western larch |
341 | #f2f4a5 | Redwood |
361 | #576abe | Knobcone pine |
362 | #b56f7c | Southwestern white pine |
365 | #dca5ca | Foxtail pine / bristlecone pine |
366 | #67eff4 | Limber pine |
367 | #ca5483 | Whitebark pine |
368 | #a8bf86 | Miscellaneous western softwoods |
369 | #aff6e9 | Western juniper |
371 | #a53394 | California mixed conifer |
381 | #e9e2eb | Scotch pine |
383 | #d0cfad | Other exotic softwoods |
384 | #eee1b3 | Norway spruce |
385 | #e4db79 | Introduced larch |
401 | #ec42f6 | Eastern white pine / northern red oak / white ash |
402 | #7e9f81 | Eastern redcedar / hardwood |
403 | #4a7196 | Longleaf pine / oak |
404 | #5cd76e | Shortleaf pine / oak |
405 | #37999a | Virginia pine / southern red oak |
406 | #ed54dd | Loblolly pine / hardwood |
407 | #6792f0 | Slash pine / hardwood |
409 | #82eb3e | Other pine / hardwood |
501 | #b8db98 | Post oak / blackjack oak |
502 | #bccc4b | Chestnut oak |
503 | #f22ab1 | White oak / red oak / hickory |
504 | #f6e095 | White oak |
505 | #77989d | Northern red oak |
506 | #718640 | Yellow-poplar / white oak / northern red oak |
507 | #9d4f8d | Sassafras / persimmon |
508 | #c376e4 | Sweetgum / yellow-poplar |
509 | #7cb133 | Bur oak |
510 | #5fa7cc | Scarlet oak |
511 | #9ae6e8 | Yellow-poplar |
512 | #def3b1 | Black walnut |
513 | #b88bf2 | Black locust |
514 | #a5f031 | Southern scrub oak |
515 | #eeafa3 | Chestnut oak / black oak / scarlet oak |
516 | #9bd763 | Cherry / white ash / yellow-poplar |
517 | #b838ee | Elm / ash / black locust |
519 | #e88fbb | Red maple / oak |
520 | #cce5b9 | Mixed upland hardwoods |
601 | #ed8a9c | Swamp chestnut oak / cherrybark oak |
602 | #c8ed2d | Sweetgum / Nuttall oak / willow oak |
605 | #f0bd53 | Overcup oak / water hickory |
606 | #60dad1 | Atlantic white-cedar |
607 | #c790c1 | Baldcypress / water tupelo |
608 | #54c7ef | Sweetbay / swamp tupelo / red maple |
609 | #8e6a31 | Baldcypress / pondcypress |
701 | #cecceb | Black ash / American elm / red maple |
702 | #b1bef2 | River birch / sycamore |
703 | #f077ef | Cottonwood |
704 | #969aca | Willow |
705 | #c4ec84 | Sycamore / pecan / American elm |
706 | #efadec | Sugarberry / hackberry / elm / green ash |
707 | #da23cf | Silver maple / American elm |
708 | #e4c3c0 | Red maple / lowland |
709 | #bf90e1 | Cottonwood / willow |
722 | #52f3eb | Oregon ash |
801 | #a2c9eb | Sugar maple / beech / yellow birch |
802 | #3ff451 | Black cherry |
805 | #6ab7f2 | Hard maple / basswood |
809 | #b3714c | Red maple / upland |
901 | #d28f25 | Aspen |
902 | #f59550 | Paper birch |
903 | #dd82c7 | Gray birch |
904 | #c5f2a0 | Balsam poplar |
905 | #e3f2e7 | Pin cherry |
911 | #b2c2b1 | Red alder |
912 | #4ff389 | Bigleaf maple |
921 | #8772e8 | Gray pine |
922 | #bb24a1 | California black oak |
923 | #c7f7cd | Oregon white oak |
924 | #8fc3c6 | Blue oak |
931 | #f13896 | Coast live oak |
933 | #efe92f | Canyon live oak |
934 | #6c48ae | Interior live oak |
935 | #b3e8cd | California white oak (valley oak) |
941 | #e8a882 | Tanoak |
942 | #b3e0f0 | California laurel |
943 | #6a48de | Giant chinkapin |
961 | #c3ab6e | Pacific madrone |
962 | #f5f169 | Other hardwoods |
971 | #f3c66f | Deciduous oak woodland |
972 | #4ecb89 | Evergreen oak woodland |
973 | #60b0c2 | Mesquite woodland |
974 | #76e45f | Cercocarpus (mountain brush) woodland |
975 | #b3c5ce | Intermountain maple woodland |
976 | #ee73af | Miscellaneous woodland hardwoods |
982 | #9473b4 | Mangrove |
983 | #80d9a8 | Palms |
995 | #e67774 | Other exotic hardwoods |
FORTYPCD Class Table
Value | Color | Description |
---|---|---|
101 | #6e26ec | Jack pine |
102 | #c765ec | Red pine |
103 | #efdbcc | Eastern white pine |
104 | #a8a9f2 | Eastern white pine / eastern hemlock |
105 | #d0ce83 | Eastern hemlock |
121 | #47d0b6 | Balsam fir |
122 | #9d86a6 | White spruce |
123 | #a5f77a | Red spruce |
124 | #dcf4d9 | Red spruce / balsam fir |
125 | #64e1f7 | Black spruce |
126 | #afa9b0 | Tamarack |
127 | #f2c531 | Northern white-cedar |
141 | #84d7eb | Longleaf pine |
142 | #ef4677 | Slash pine |
161 | #97f2ad | Loblolly pine |
162 | #d45549 | Shortleaf pine |
163 | #63f3ac | Virginia pine |
164 | #f58de4 | Sand pine |
165 | #e9c991 | Table Mountain pine |
166 | #ddbef2 | Pond pine |
167 | #bba847 | Pitch pine |
171 | #95eacd | Eastern redcedar |
182 | #a6827b | Rocky Mountain juniper |
184 | #bca28a | Juniper woodland |
185 | #cff3f4 | Pinyon / juniper woodland |
201 | #c1ded5 | Douglas-fir |
202 | #948ee9 | Port-Orford-cedar |
221 | #d0ef5b | Ponderosa pine |
222 | #e29af0 | Incense-cedar |
224 | #c34bc3 | Sugar pine |
225 | #e6acb8 | Jeffrey pine |
226 | #ea3b34 | Coulter pine |
241 | #724353 | Western white pine |
261 | #f2c7a0 | White fir |
262 | #6ab27f | Red fir |
263 | #f1f3d3 | Noble fir |
264 | #ea5aba | Pacific silver fir |
265 | #edc7e1 | Engelmann spruce |
266 | #4965e2 | Engelmann spruce / subalpine fir |
267 | #a0f4c4 | Grand fir |
268 | #5697de | Subalpine fir |
269 | #5defc4 | Blue spruce |
270 | #e8f384 | Mountain hemlock |
271 | #cc63bd | Alaska-yellow-cedar |
281 | #e16f3d | Lodgepole pine |
301 | #f5da68 | Western hemlock |
304 | #a63bcf | Western redcedar |
305 | #51d0dd | Sitka spruce |
321 | #6bc5b6 | Western larch |
341 | #f2f4a5 | Redwood |
361 | #576abe | Knobcone pine |
362 | #b56f7c | Southwestern white pine |
365 | #dca5ca | Foxtail pine / bristlecone pine |
366 | #67eff4 | Limber pine |
367 | #ca5483 | Whitebark pine |
368 | #a8bf86 | Miscellaneous western softwoods |
369 | #aff6e9 | Western juniper |
371 | #a53394 | California mixed conifer |
381 | #e9e2eb | Scotch pine |
383 | #d0cfad | Other exotic softwoods |
384 | #eee1b3 | Norway spruce |
385 | #e4db79 | Introduced larch |
401 | #ec42f6 | Eastern white pine / northern red oak / white ash |
402 | #7e9f81 | Eastern redcedar / hardwood |
403 | #4a7196 | Longleaf pine / oak |
404 | #5cd76e | Shortleaf pine / oak |
405 | #37999a | Virginia pine / southern red oak |
406 | #ed54dd | Loblolly pine / hardwood |
407 | #6792f0 | Slash pine / hardwood |
409 | #82eb3e | Other pine / hardwood |
501 | #b8db98 | Post oak / blackjack oak |
502 | #bccc4b | Chestnut oak |
503 | #f22ab1 | White oak / red oak / hickory |
504 | #f6e095 | White oak |
505 | #77989d | Northern red oak |
506 | #718640 | Yellow-poplar / white oak / northern red oak |
507 | #9d4f8d | Sassafras / persimmon |
508 | #c376e4 | Sweetgum / yellow-poplar |
509 | #7cb133 | Bur oak |
510 | #5fa7cc | Scarlet oak |
511 | #9ae6e8 | Yellow-poplar |
512 | #def3b1 | Black walnut |
513 | #b88bf2 | Black locust |
514 | #a5f031 | Southern scrub oak |
515 | #eeafa3 | Chestnut oak / black oak / scarlet oak |
516 | #9bd763 | Cherry / white ash / yellow-poplar |
517 | #b838ee | Elm / ash / black locust |
519 | #e88fbb | Red maple / oak |
520 | #cce5b9 | Mixed upland hardwoods |
601 | #ed8a9c | Swamp chestnut oak / cherrybark oak |
602 | #c8ed2d | Sweetgum / Nuttall oak / willow oak |
605 | #f0bd53 | Overcup oak / water hickory |
606 | #60dad1 | Atlantic white-cedar |
607 | #c790c1 | Baldcypress / water tupelo |
608 | #54c7ef | Sweetbay / swamp tupelo / red maple |
609 | #8e6a31 | Baldcypress / pondcypress |
701 | #cecceb | Black ash / American elm / red maple |
702 | #b1bef2 | River birch / sycamore |
703 | #f077ef | Cottonwood |
704 | #969aca | Willow |
705 | #c4ec84 | Sycamore / pecan / American elm |
706 | #efadec | Sugarberry / hackberry / elm / green ash |
707 | #da23cf | Silver maple / American elm |
708 | #e4c3c0 | Red maple / lowland |
709 | #bf90e1 | Cottonwood / willow |
722 | #52f3eb | Oregon ash |
801 | #a2c9eb | Sugar maple / beech / yellow birch |
802 | #3ff451 | Black cherry |
805 | #6ab7f2 | Hard maple / basswood |
809 | #b3714c | Red maple / upland |
901 | #d28f25 | Aspen |
902 | #f59550 | Paper birch |
903 | #dd82c7 | Gray birch |
904 | #c5f2a0 | Balsam poplar |
905 | #e3f2e7 | Pin cherry |
911 | #b2c2b1 | Red alder |
912 | #4ff389 | Bigleaf maple |
921 | #8772e8 | Gray pine |
922 | #bb24a1 | California black oak |
923 | #c7f7cd | Oregon white oak |
924 | #8fc3c6 | Blue oak |
931 | #f13896 | Coast live oak |
933 | #efe92f | Canyon live oak |
934 | #6c48ae | Interior live oak |
935 | #b3e8cd | California white oak (valley oak) |
941 | #e8a882 | Tanoak |
942 | #b3e0f0 | California laurel |
943 | #6a48de | Giant chinkapin |
961 | #c3ab6e | Pacific madrone |
962 | #f5f169 | Other hardwoods |
971 | #f3c66f | Deciduous oak woodland |
972 | #4ecb89 | Evergreen oak woodland |
973 | #60b0c2 | Mesquite woodland |
974 | #76e45f | Cercocarpus (mountain brush) woodland |
975 | #b3c5ce | Intermountain maple woodland |
976 | #ee73af | Miscellaneous woodland hardwoods |
982 | #9473b4 | Mangrove |
983 | #80d9a8 | Palms |
991 | #e6a25e | Paulownia |
992 | #f8f3b7 | Melaleuca |
995 | #e67774 | Other exotic hardwoods |
999 | #d5cc36 | Nonstocked |
STDSZCD Class Table
Value | Color | Description |
---|---|---|
1 | #38a800 | Large diameter - Stands with an all live stocking value of at least 10 (base 100); with more than 50 percent of the stocking in medium and large diameter trees; and with the stocking of large diameter trees equal to or greater than the stocking of medium diameter trees. |
2 | #ffff00 | Medium diameter - Stands with an all live stocking value of at least 10 (base 100); with more than 50 percent of the stocking in medium and large diameter trees; and with the stocking of large diameter trees less than the stocking of medium diameter trees. |
3 | #feba12 | Small diameter - Stands with an all live stocking value of at least 10 (base 100) on which at least 50 percent of the stocking is in small diameter trees. |
5 | #c62363 | Nonstocked - Forest land with all live stocking value less than 10. |
Image Properties
Image Properties
Name | Type | Description |
---|---|---|
year | STRING | Year of the product. |
study_area | STRING | Study area of the product. |
landfire_ver | STRING | Landfire version used as reference and target data for imputation. |
Terms of Use
Terms of Use
The USDA Forest Service makes no warranty, expressed or implied, including the warranties of merchantability and fitness for a particular purpose, nor assumes any legal liability or responsibility for the accuracy, reliability, completeness or utility of these geospatial data, or for the improper or incorrect use of these geospatial data. These geospatial data and related maps or graphics are not legal documents and are not intended to be used as such. The data and maps may not be used to determine title, ownership, legal descriptions or boundaries, legal jurisdiction, or restrictions that may be in place on either public or private land. Natural hazards may or may not be depicted on the data and maps, and land users should exercise due caution. The data are dynamic and may change over time. The user is responsible to verify the limitations of the geospatial data and to use the data accordingly.
These data were collected using funding from the U.S. Government and can be used without additional permissions or fees. If you use these data in a publication, presentation, or other research product please use the appropriate citation:
Houtman, R. M., L. S. T. Leatherman, S. N. Zimmer, I. W. Housman, A. Shrestha,
J. D. Shaw, K. L. Riley: 2025. TreeMap 2022 CONUS: A tree-level model of the
forests of the conterminous United States circa 2022. Fort Collins,
CO: Forest Service Research Data Archive.
doi:10.2737/RDS-2025-0032
See TreeMap Research Data Archive for additional information.
Citations
Houtman, R. M., L. S. T. Leatherman, S. N. Zimmer, I. W. Housman, A. Shrestha,
J. D. Shaw, K. L. Riley: 2025. TreeMap 2022 CONUS: A tree-level model of the forests of the conterminous United States circa 2022. Fort Collins, CO: Forest Service Research Data Archive. doi:10.2737/RDS-2025-0032Riley, K. L., I. C. Grenfell, M. A. Finney and J. D. Shaw: 2021, TreeMap 2016: A tree-level model of the forests of the conterminous United States circa 2016. Fort Collins, CO: Forest Service Research Data Archive. doi:10.2737/RDS-2021-0074
Wilson, B T., A. J. Lister and R. I. Riemann: 2012, A Nearest-Neighbor Imputation Approach to Mapping Tree Species over Large Areas Using Forest Inventory Plots and Moderate Resolution Raster Data. Forest Ecol. Manag. 271:182-198. doi:10.1016/j.foreco.2012.02.002
Pierce, K. B. Jr., J. L. Ohmann, M. C. Wimberly, M. J. Gregory and J. S Fried: 2009, Mapping Wildland Fuels and Forest Structure for Land Management: A Comparison of Nearest Neighbor Imputation and Other Methods. Can. J. For. Res. 39: 1901-1916. doi:10.1139/X09-102
Ohmann, J. L. and M. J. Gregory: 2002, Predictive Mapping of Forest Composition and Structure with Direct Gradient Analysis and Nearest- Neighbor Imputation in Coastal Oregon, USA. Can. J. For. Res. 32:725-741. doi: 10.1139/X02-011
Forest Inventory Analysis: 2024, Forest Inventory Analysis DataMart. Forest Inventory Analysis DataMart FIADB_1.9.1. 2024. Accessed February 2024 at https://apps.fs.usda.gov/fia/datamart/datamart.html doi: 10.2737/DS-2001-FIADB
DOIs
Explore with Earth Engine
Code Editor (JavaScript)
var dataset = ee.ImageCollection('USFS/GTAC/TreeMap/v2022'); var TreeMap = dataset.filter('year == "2022"') .filter('study_area == "CONUS"') .first(); // 'Official' TreeMap visualization palettes var palettes = { bamako: ['00404d','134b42','265737','3a652a','52741c','71870b','969206','c5ae32','e7cd68','ffe599'], lajolla: ['ffffcc','fbec9a','f4cc68','eca855','e48751','d2624d','a54742','73382f','422818','1a1a01'], imola: ['1a33b3','2446a9','2e599f','396b94','497b85','60927b','7bae74','98cb6d','c4ea67','ffff66'] }; var palettesR = { bamako_r: palettes.bamako.reverse(), lajolla_r: palettes.lajolla.reverse(), imola_r: palettes.imola.reverse() }; // Define each band's (attributes) visualization parameters var layers = [ {band: 'FLDSZCD', name: 'Field Stand-Size Class Code', shown: false}, {band: 'FLDTYPCD', name: 'Field Forest Type Code', shown: true}, {band: 'FORTYPCD', name: 'Algorithm Forest Type Code', shown: false}, {band: 'STDSZCD', name: 'Algorithm Stand-Size Class Code', shown: false}, {band: 'TM_ID', name: 'TreeMap ID', shown: false}, {band: 'VOLCFNET_L', min: 137, max: 5790, palette: palettesR.imola_r, name: 'Volume, Live (ft³/acre)', shown: false}, {band: 'VOLCFNET_D', min: 5, max: 1326, palette: palettesR.imola_r, name: 'Volume, Standing Dead (ft³/acre)', shown: false}, {band: 'VOLBFNET_L', min: 441, max: 36522, palette: palettesR.imola_r, name: 'Volume, Live (sawlog-board-ft/acre)', shown: false}, {band: 'TPA_LIVE', min: 252, max: 1666, palette: palettesR.bamako_r, name: 'Live Trees Per Acre', shown: false}, {band: 'TPA_DEAD', min: 38, max: 126, palette: palettes.bamako, name: 'Dead Trees Per Acre', shown: false}, {band: 'STANDHT', min: 23, max: 194, palette: palettesR.bamako_r, name: 'Height of Dominant Trees (ft)', shown: false}, {band: 'SDIsum', min: 30, max: 460, palette: palettesR.bamako_r, name: 'Sum of Stand Density Index', shown: false}, {band: 'QMD', min: 2, max: 25, palette: palettesR.bamako_r, name: 'Stand Quadratic Mean Diameter (in)', shown: false}, {band: 'GSSTK', min: 0, max: 100, palette: palettesR.bamako_r, name: 'Growing-Stock Stocking (%)', shown: false}, {band: 'DRYBIO_L', min: 4, max: 118, palette: palettesR.lajolla_r, name: 'Dry Live Tree Biomass, Above Ground (tons/acre)', shown: false}, {band: 'DRYBIO_D', min: 0, max: 10, palette: palettes.lajolla, name: 'Dry Standing Dead Tree Biomass, Above Ground (tons/acre)', shown: false}, {band: 'CARBON_L', min: 2, max: 50, palette: palettesR.lajolla_r, name: 'Carbon, Live Above Ground (tons/acre)', shown: false}, {band: 'CARBON_DWN', min: 0, max: 15, palette: palettes.lajolla, name: 'Carbon, Down Dead (tons/acre)', shown: false}, {band: 'CARBON_D', min: 0, max: 10, palette: palettes.lajolla, name: 'Carbon, Standing Dead (tons/acre)', shown: false}, {band: 'CANOPYPCT', min: 0, max: 100, palette: palettesR.bamako_r, name: 'Live Canopy Cover (%)', shown: false}, {band: 'BALIVE', min: 24, max: 217, palette: palettesR.bamako_r, name: 'Live Tree Basal Area (ft²/acre)', shown: false}, {band: 'ALSTK', min: 0, max: 100, palette: palettesR.bamako_r, name: 'All-Live-Tree Stocking (%)', shown: false} ]; // Load all attributes to the map with their corresponding visualization parameters layers.forEach(function(layer){ var image = TreeMap.select(layer.band); var vis = {}; if (layer.min === undefined) { Map.addLayer(image.randomVisualizer(), {}, layer.band + ': ' + layer.name, layer.shown); } else { Map.addLayer(image, { min : layer.min, max : layer.max, palette : layer.palette }, layer.band + ': ' + layer.name, layer.shown); } }); // Set basemap Map.setOptions('TERRAIN'); // Center map on CONUS Map.setCenter(-95.712891, 38, 5);