[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["필요한 정보가 없음","missingTheInformationINeed","thumb-down"],["너무 복잡함/단계 수가 너무 많음","tooComplicatedTooManySteps","thumb-down"],["오래됨","outOfDate","thumb-down"],["번역 문제","translationIssue","thumb-down"],["샘플/코드 문제","samplesCodeIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-07-27(UTC)"],[[["This course explores common data traps encountered in machine learning, encompassing dataset quality, thinking processes, visualization, and statistical analysis."],["Machine learning practitioners must critically assess their datasets, identifying potential biases, confounding factors, and downstream issues arising from data usage."],["Thoroughly understanding data characteristics and collection conditions is crucial for mitigating data pitfalls and ensuring robust machine learning models."],["Confirmation bias should be actively addressed, and data findings should be validated against intuition and common sense, prompting further investigation where discrepancies exist."],["Further insights into data analysis and interpretation can be gained from the listed additional reading materials covering topics like chart interpretation, statistical manipulation, and map-based data representation."]]],[]]