MapBiomas Land Use and Land Cover - Brazil V1.0

projects/mapbiomas-public/assets/brazil/lulc/v1
info

This dataset is part of a Publisher Catalog, and not managed by Google Earth Engine. Contact contato@mapbiomas.org for bugs or view more datasets from the MapBiomas Catalog. Learn more about Publisher datasets.

Catalog Owner
MapBiomas
Dataset Availability
1985-01-01T00:00:00Z–2024-12-31T00:00:00Z
Dataset Provider
Contact
contato@mapbiomas.org
Earth Engine Snippet
ee.ImageCollection("projects/mapbiomas-public/assets/brazil/lulc/v1")
Tags
landsat-derived landuse-landcover publisher-dataset
mapbiomas-public

Description

MapBiomas Land Use and Land Cover (LULC) dataset for Brazil is produced annually by the MapBiomas Project using Landsat satellite imagery and machine learning classification techniques. The dataset provides consistent, thematically detailed maps at 30-meter resolution, covering multiple decades and updated each year.

Each image in the collection contains annual land cover classifications with pixel values representing categorical land cover classes, such as forest, agriculture, pasture, water bodies, and urban areas. The classification legend is standardized and maintained across all years, enabling multi-temporal analyses of land use change, deforestation, reforestation, and other landscape dynamics.

The classification is based on Landsat 5 (TM), Landsat 7 (ETM+), Landsat 8 and 9 (OLI/TIRS) surface reflectance data, preprocessed and mosaicked to generate cloud-free composites for each year. The classification process includes automated decision trees trained with reference samples, along with manual validation by regional experts.

Each image contains one band named "classification", representing the land cover classification for that specific year, version and collection id.

For more information, classification legend, methodology, and accuracy assessments, visit the MapBiomas website.

It is recommended to consult the classification legend to interpret the class values. Note that MapBiomas provides discrete classification maps, not probabilities. These maps are most appropriate for map transitions, time series analysis, and land policy monitoring applications.

Bands

Pixel Size
30 meters

Bands

Name Pixel Size Description
classification meters

Land use and land cover classification, with integer values corresponding to MapBiomas legend classes.

classification Class Table

Value Color Description
1 #1f8d49

Forest

3 #1f8d49

Forest Formation

4 #7dc975

Savanna Formation

5 #04381d

Mangrove

6 #007785

Floodable Forest

9 #7a5900

Forest Plantation

10 #d6bc74

Herbaceous and Shrubby Vegetation

11 #519799

Wetland

12 #d6bc74

Grassland

14 #ffefc3

Farming

15 #edde8e

Pasture

18 #e974ed

Agriculture

19 #c27ba0

Temporary Crop

20 #db7093

Sugar cane

21 #ffefc3

Mosaic of Uses

22 #d4271e

Non vegetated area

23 #ffa07a

Beach, Dune and Sand Spot

24 #d4271e

Urban Area

25 #db4d4f

Other non Vegetated Areas

26 #2532e4

Water

29 #ffaa5f

Rocky Outcrop

30 #9c0027

Mining

31 #091077

Aquaculture

32 #fc8114

Hypersaline Tidal Flat

33 #2532e4

River, Lake and Ocean

35 #9065d0

Palm Oil

36 #d082de

Perennial Crop

39 #f5b3c8

Soybean

40 #c71585

Rice

41 #f54ca9

Other Temporary Crops

46 #d68fe2

Coffee

47 #9932cc

Citrus

48 #e6ccff

Other Perennial Crops

49 #02d659

Wooded Sandbank Vegetation

50 #ad5100

Herbaceous Sandbank Vegetation

62 #ff69b4

Cotton (beta)

75 #c12100

Photovoltaic Power Plant (beta)

Image Properties

Image Properties

Name Type Description
year INT

Year of the land use and land cover classification.

version STRING

Version of the land use and land cover classification.

collection_id DOUBLE

Collection identifier of the land use and land cover classification.

Terms of Use

Terms of Use

CC-BY-4.0

Citations

Citations:
  • Souza et al. (2020) – Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine – Remote Sensing, Volume 12, Issue 17, 10.3390/rs12172735.

    doi:10.3390/rs12172735

DOIs

Explore with Earth Engine

Code Editor (JavaScript)

/**
  MapBiomas Collection 10 - LULC Visualization for 2024
*/

// Define the asset path for MapBiomas Collection 10
var assetPath = 'projects/mapbiomas-public/assets/brazil/lulc/v1';

// Define the year for visualization
var year = 2024;

// Load the classified image for the year 2024 from Collection 10
var collection = ee.ImageCollection(assetPath)
	.filter(ee.Filter.eq('collection_id', 10.0))
	.filter(ee.Filter.eq('version', 'v1'))
	.filter(ee.Filter.eq('year', year));

// Define visualization parameters
var visParams = {
	min: 0,
	max: 75,  // Maximum class value in Collection 10
	palette: [
		'ffffff',  // [0] Not Observed
		'32a65e',  // [1] --
		'32a65e',  // [2] --
		'1f8d49',  // [3] Forest Formation
		'7dc975',  // [4] Savanna Formation
		'04381d',  // [5] Mangrove
		'026975',  // [6] Floodable Forest
		'000000',  // [7] --
		'000000',  // [8] --
		'7a6c00',  // [9] Forest Plantation
		'ad975a',  // [10] --
		'519799',  // [11] Wetland
		'd6bc74',  // [12] Grassland
		'd89f5c',  // [13] Other Non Forest Formations
		'FFFFB2',  // [14] --
		'edde8e',  // [15] Pasture
		'000000',  // [16] --
		'000000',  // [17] --
		'f5b3c8',  // [18] Agriculture
		'C27BA0',  // [19] --
		'db7093',  // [20] Sugar Cane
		'ffefc3',  // [21] Mosaic of Uses
		'db4d4f',  // [22] Non vegetated area
		'ffa07a',  // [23] Beach, Dune and Sand Spot
		'd4271e',  // [24] Urban Area
		'db4d4f',  // [25] Other Non Vegetated Areas
		'0000FF',  // [26] --
		'000000',  // [27] --
		'000000',  // [28] --
		'ffaa5f',  // [29] Rocky Outcrop
		'9c0027',  // [30] Mining
		'091077',  // [31] Aquaculture
		'fc8114',  // [32] Hypersaline Tidal Flat
		'2532e4',  // [33] Rivers, Lakes and Ocean
		'93dfe6',  // [34] Glacier
		'9065d0',  // [35] --
		'd082de',  // [36] --
		'000000',  // [37] --
		'000000',  // [38] --
		'f5b3c8',  // [39] Soybean
		'c71585',  // [40] Rice
		'f54ca9',  // [41] Other Temporary Crops
		'cca0d4',  // [42] --
		'dbd26b',  // [43] --
		'807a40',  // [44] --
		'e04cfa',  // [45] --
		'd68fe2',  // [46] Coffee
		'9932cc',  // [47] Citrus
		'e6ccff',  // [48] Other Perennial Crops
		'02d659',  // [49] Wooded Sandbank Vegetation
		'ad5100',  // [50] Herbaceous Sandbank Vegetation
		'000000',  // [51] --
		'000000',  // [52] --
		'000000',  // [53] --
		'000000',  // [54] --
		'000000',  // [55] --
		'000000',  // [56] --
		'CC66FF',  // [57] --
		'FF6666',  // [58] --
		'006400',  // [59] --
		'8d9e8b',  // [60] --
		'f5d5d5',  // [61] Salt Flats
		'ff69b4',  // [62] Cotton
		'ebf8b5',  // [63] --
		'000000',  // [64] --
		'000000',  // [65] --
		'91ff36',  // [66] --
		'7dc975',  // [67] --
		'e97a7a',  // [68] --
		'0fffe3',  // [69] Coral Reefs
		'000000',  // [70] --
		'000000',  // [71] --
		'000000',  // [72] --
		'000000',  // [73] --
		'000000',  // [74] --
		'c12100',  // [75] Photovoltaic Power Plant
	]
};

// Add the layer to the map
Map.addLayer(collection, visParams, 'MapBiomas LULC 2024');

// Center the map on the image with a zoom level of 5 (covers Brazil)
Map.centerObject(collection, 5);
Open in Code Editor