- مدى توفّر مجموعة البيانات
- 1985-01-01T00:00:00Z–2023-12-31T00:00:00Z
- الجهة المنتجة لمجموعة البيانات
- مركز تكنولوجيات وتطبيقات المعلومات الجغرافية (GTAC) التابع لهيئة الغابات في وزارة الزراعة الأمريكية (USDA)
- العلامات
الوصف
هذا المنتج هو جزء من مجموعة بيانات نظام مراقبة التغيّر في المناظر الطبيعية (LCMS). تعرض هذه الخريطة التغيير الذي تم تصميمه باستخدام نظام إدارة معلومات الأراضي (LCMS)، وغطاء الأرض، و/أو فئات استخدام الأراضي لكل عام يغطي الولايات المتحدة المتجاورة (CONUS) والمناطق خارج الولايات المتحدة المتجاورة (OCONUS) التي تشمل جنوب شرق ألاسكا (SEAK) وبورتوريكو وجزر فيرجن التابعة للولايات المتحدة (PRUSVI) وهاواي (HI).
نظام إدارة التغيّر في المناظر الطبيعية (LCMS) هو نظام استشعار عن بُعد لرسم خرائط التغيّر في المناظر الطبيعية ومراقبته في جميع أنحاء الولايات المتحدة. ويهدف إلى تطوير نهج متّسق باستخدام أحدث التقنيات والتطوّرات في رصد التغييرات لإنتاج خريطة "أفضل ما هو متاح" للتغييرات في المناظر الطبيعية.
تشمل المخرجات ثلاثة منتجات سنوية: التغيير، والغطاء الأرضي، واستخدام الأراضي. يشير التغيير تحديدًا إلى الغطاء النباتي، ويشمل الفقدان البطيء والفقدان السريع (الذي يشمل أيضًا التغييرات الهيدرولوجية، مثل الفيضانات أو الجفاف) والزيادة. يتم توقّع هذه القيم لكل عام من السلسلة الزمنية لبيانات Landsat، وهي تشكّل المنتجات الأساسية لنظام LCMS. تعرض خرائط الغطاء الأرضي واستخدام الأراضي الغطاء الأرضي على مستوى أشكال الحياة واستخدام الأراضي على مستوى واسع لكل عام.
بما أنّه لا توجد خوارزمية واحدة تقدّم أفضل أداء في جميع الحالات، تستخدم LCMS مجموعة من النماذج كمتنبئات، ما يحسّن دقة الخريطة في مجموعة من النظم البيئية وعمليات التغيير (Healey et al., (2018). تقدّم مجموعة الخرائط الناتجة التي تتضمّن تغييرات في نظام إدارة دورة حياة الأراضي، وغطاء الأراضي، واستخدام الأراضي، وصفًا شاملاً للتغييرات التي طرأت على المناظر الطبيعية في جميع أنحاء الولايات المتحدة منذ عام 1985.
تشمل طبقات التوقّعات الخاصة بنموذج LCMS النتائج من خوارزميتَي LandTrendr وCCDC لرصد التغيّرات، ومعلومات حول التضاريس. يمكن الوصول إلى هذه المكوّنات ومعالجتها باستخدام Google Earth Engine (Gorelick et al., 2017).
بالنسبة إلى CCDC، تم استخدام بيانات انعكاسية السطح من المستوى 1 في Landsat Collection 2 التابعة لهيئة المسح الجيولوجي الأمريكية (USGS) في الولايات المتحدة القارية، وبيانات الانعكاسية في أعلى الغلاف الجوي من المستوى 1 في Landsat في جنوب شرق ألاسكا وبورتوريكو وجزر فيرجن الأمريكية وهاواي. لإنتاج صور مركّبة سنوية في LandTrendr، تم استخدام بيانات الانعكاسية في أعلى الغلاف الجوي من المستوى 1 في Landsat Collection 2 وSentinel 2A و2B. خوارزمية cFmask لتحديد بيانات الغيوم (Foga et al., 2017)، وهو تطبيق لـ Fmask 2.0 (Zhu and Woodcock، 2012) (Landsat فقط)، وcloudScore (Chastain et al.، 2019) (Landsat-only)، وs2cloudless (Sentinel-Hub، 2021)، وCloud Score plus (باسكواريلا وآخرون، 2023) (Sentinel 2 فقط) تُستخدم لإخفاء السُحب، بينما تُستخدم TDOM (Chastain et al., 2019) تُستخدَم لإخفاء ظلال السحب (Landsat وSentinel 2). بالنسبة إلى LandTrendr، يتم بعد ذلك احتساب الوسيط السنوي لتلخيص القيم الخالية من السحب وظلال السحب من كل عام في صورة مركّبة واحدة.
يتم تقسيم السلسلة الزمنية المركّبة مؤقتًا باستخدام LandTrendr (Kennedy et al., 2010، Kennedy et al., 2018; Cohen et al., (2018).
يتم أيضًا تقسيم جميع القيم الخالية من السحب وظلال السحب زمنيًا باستخدام خوارزمية CCDC (Zhu and Woodcock، 2014).
تتضمّن بيانات التوقّعات قيمًا مركّبة أولية، وقيمًا ملائمة لنموذج LandTrendr، وفروقًا بين كل زوج من القيم، ومدة القطعة، ومقدار التغيير، والميل، ومعاملات الجيب وجيب التمام لنموذج CCDC (أول 3 توافقيات)، وقيمًا ملائمة، وفروقًا بين كل زوج من القيم، بالإضافة إلى الارتفاع، والميل، وجيب تمام السمت، وجيب تمام السمت، ومؤشرات الموقع الطبوغرافي (Weiss، 2001) من بيانات برنامج USGS 3D Elevation Program (3DEP) بدقة 10 أمتار (هيئة المسح الجيولوجي الأمريكية، 2019).
يتم جمع البيانات المرجعية باستخدام TimeSync، وهي أداة مستندة إلى الويب تساعد المحلّلين في عرض سجلّ بيانات Landsat وتفسيره منذ عام 1984 حتى الآن (Cohen et al., (2010).
تم تدريب نماذج "الغابات العشوائية" (Random Forests) (Breiman، 2001) باستخدام بيانات مرجعية من TimeSync وبيانات تنبؤية من LandTrendr وCCDC ومؤشرات التضاريس للتنبؤ بالتغيير السنوي وفئات الغطاء الأرضي واستخدام الأراضي. بعد وضع النماذج، وضعنا سلسلة من حدود الاحتمالية ومجموعات القواعد باستخدام مجموعات بيانات مساعدة لتحسين مخرجات الخرائط النوعية والحدّ من الأخطاء. يمكنك العثور على مزيد من المعلومات في ملخّص طرق LCMS المضمّن في الوصف.
مَراجع إضافية
مثال أكثر تفصيلاً على الرمز البرمجي لاستخدام بيانات نظام إدارة المحتوى التعليمي (LCMS)
مستكشف بيانات نظام إدارة المحتوى التعليمي هو تطبيق مستند إلى الويب يتيح للمستخدمين عرض بيانات نظام إدارة المحتوى التعليمي وتحليلها وتلخيصها وتنزيلها.
يُرجى الاطّلاع على موجز طرق نظام إدارة المحتوى المحلي (LCMS) للحصول على معلومات أكثر تفصيلاً حول الطرق وتقييم الدقة، أو على مستودع بيانات نظام إدارة المحتوى المحلي (LCMS) لتنزيل البيانات والبيانات الوصفية ومستندات الدعم.
تم تعديل منتج استخدام الأراضي في الولايات المتحدة القارية في 2 يوليو 2024 لحلّ مشكلة في فئة الأراضي المطوّرة.
تم إصدار بيانات PRUSVI وHI في 1 أكتوبر 2024.
يُرجى التواصل مع [sm.fs.lcms@usda.gov] لطرح أي أسئلة أو تقديم طلبات محدّدة بشأن البيانات.
النطاقات
حجم البكسل
30 مترًا
النطاقات
| الاسم | حجم البكسل | الوصف | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Change |
متر | المنتج النهائي لتغيير نظام إدارة المحتوى التعليمي (LCMS) حسب الموضوع يتم ربط إجمالي ثلاث فئات تغيير (فقدان بطيء وفقدان سريع واكتساب) لكل عام. يتم توقّع كل فئة باستخدام نموذج Random Forest منفصل، والذي يعرض احتمالاً (نسبة الأشجار ضمن نموذج Random Forest) لانتماء البكسل إلى تلك الفئة. لهذا السبب، تحتوي وحدات البكسل الفردية على ثلاث نتائج مختلفة للنموذج لكل عام. يتم تعيين الفئات النهائية إلى فئة التغيير التي لديها أعلى احتمال يتجاوز أيضًا حدًا أدنى محددًا. يتم تعيين أي بكسل لا يحتوي على أي قيمة أعلى من الحدّ الأدنى لكل فئة إلى فئة "مستقر". قبل تحديد فئة التغيير، تم تطبيق قاعدة على جميع مناطق الدراسة لمنع التغيير في الغطاء الأرضي غير النباتي. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover |
متر | المنتج النهائي للغطاء الأرضي في نظام إدارة معلومات الأراضي (LCMS) يتم تحديد 14 فئة من فئات الغطاء الأرضي سنويًا باستخدام بيانات TimeSync المرجعية والمعلومات الطيفية المستمدّة من صور Landsat. يتم توقّع كل فئة باستخدام نموذج "الغابة العشوائية" منفصل، يعرض احتمالاً (نسبة الأشجار ضمن نموذج "الغابة العشوائية") يشير إلى أنّ البكسل ينتمي إلى تلك الفئة. لهذا السبب، تتضمّن وحدات البكسل الفردية 14 ناتجًا مختلفًا للنموذج لكل عام، ويتم تحديد الفئات النهائية لغطاء الأرض وفقًا لأعلى احتمال. بالنسبة إلى جنوب شرق ألاسكا، قبل تحديد فئة الغطاء الأرضي ذات الاحتمالية الأعلى، تم تطبيق قاعدة غطاء أرضي للحد من تحديد فئة الغطاء الأرضي للأشجار والثلج في مناطق المد والجزر الكبيرة عند مستوى سطح البحر. لم يتم تطبيق أي قواعد خاصة بغطاء الأرض على الولايات المتحدة القارية أو بورتوريكو وجزر فيرجن التابعة للولايات المتحدة أو هاواي. تشير سبعة من فئات الغطاء الأرضي البالغ عددها 14 فئة إلى غطاء أرضي واحد، حيث يغطي نوع الغطاء الأرضي هذا معظم مساحة البكسل ولا تغطي أي فئة أخرى أكثر من% 10 من البكسل. تتوفر أيضًا سبع صفوف مختلطة. تمثّل هذه الصور وحدات البكسل التي يغطي فيها نوع إضافي من الغطاء الأرضي% 10 على الأقل من وحدة البكسل. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Use |
متر | المنتج النهائي لاستخدام الأراضي في نظام إدارة محتوى التعلّم (LCMS) المواضيعي يتم رسم خرائط لما مجموعه 6 فئات من استخدام الأراضي سنويًا باستخدام بيانات TimeSync المرجعية والمعلومات الطيفية المستمدة من صور Landsat. يتم توقّع كل فئة باستخدام نموذج منفصل من "الغابة العشوائية"، والذي يعرض احتمالاً (نسبة الأشجار ضمن نموذج "الغابة العشوائية") بأنّ البكسل ينتمي إلى تلك الفئة. لهذا السبب، تحتوي وحدات البكسل الفردية على 6 نواتج نماذج مختلفة لكل عام، ويتم تعيين الفئات النهائية لاستخدام الأراضي التي لديها أعلى احتمال. قبل تحديد فئة استخدام الأراضي ذات الاحتمالية الأعلى، تم تطبيق سلسلة من حدود الاحتمالية ومجموعات القواعد باستخدام قواعد استخدام الأراضي الخاصة بمجموعات البيانات المساعدة. يمكنك الاطّلاع على مزيد من المعلومات حول حدود الاحتمالية ومجموعات القواعد في "موجز طرق LCMS" المضمّن في الوصف. تم تعديل منتج استخدام الأراضي في الولايات المتحدة القارية في 2 يوليو 2024 لحلّ مشكلة في فئة الأراضي المطوّرة. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Change_Raw_Probability_Slow_Loss |
متر | الاحتمالية النموذجية الأولية لفقدان العملاء ببطء في نظام LCMS يتم تعريفها على النحو التالي: يتضمّن الفقدان البطيء الفئات التالية من تفسير عملية تغيير TimeSync:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Change_Raw_Probability_Fast_Loss |
متر | الاحتمالية النموذجية الخام لفقدان الوزن السريع وفقًا لبيانات قياس الطيف الكتلي بالاقتران مع الفصل اللوني السائل يتم تعريفها على النحو التالي: يشمل الفقدان السريع الفئات التالية من تفسير عملية تغيير TimeSync:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Change_Raw_Probability_Gain |
متر | الاحتمالية التي تمّت محاكاتها في LCMS لتحقيق مكاسب يُعرَّف على أنّه: أرض تشهد زيادة في الغطاء النباتي بسبب النمو والتتابع على مدار عام واحد أو أكثر. ينطبق ذلك على أي مناطق قد تُظهر تغيّرًا طيفيًا مرتبطًا بإعادة نمو النباتات. في المناطق المتطوّرة، يمكن أن ينتج النمو عن النباتات الناضجة و/أو المروج والمناظر الطبيعية التي تم تركيبها حديثًا. في الغابات، يشمل النمو نمو النباتات من الأرض العارية، بالإضافة إلى نمو الأشجار المتوسطة والمهيمنة و/أو الأعشاب والشجيرات المنخفضة. من المرجّح أن تنتقل شرائح النمو/التعافي المسجّلة بعد قطع الأشجار في الغابات إلى فئات مختلفة من الغطاء الأرضي مع تجدّد الغابات. لكي تُعتبر هذه التغييرات نموًا أو تعافيًا، يجب أن تلتزم القيم الطيفية بشكل وثيق بخط اتجاه متزايد (مثل ميل موجب يبلغ حوالي 0.10 وحدة من مؤشر NDVI إذا تم تمديده إلى حوالي 20 عامًا) يستمر لعدة سنوات. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Trees |
متر | الاحتمالية الأولية التي تمّت محاكاتها باستخدام LCMS للأشجار يتم تعريفها على النحو التالي: تتألف غالبية وحدات البكسل من أشجار حية أو أشجار ميتة قائمة. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Tall-Shrubs-and-Trees-Mix |
متر | الاحتمالية الناتجة عن نموذج LCMS الخام لمزيج الشجيرات والأشجار الطويلة (جنوب شرق آسيا فقط) يتم تعريفها على النحو التالي: تتألف غالبية وحدات البكسل من شجيرات يزيد ارتفاعها عن متر واحد، كما تتألف من 10% على الأقل من الأشجار الحية أو الميتة. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Shrubs-and-Trees-Mix |
متر | الاحتمالية التي تم تصميمها باستخدام بيانات LCMS الخاصة بمزيج الشجيرات والأشجار يتم تعريفها على النحو التالي: تتألف غالبية البكسل من شجيرات، كما تتألف من 10% على الأقل من الأشجار الحية أو الأشجار الميتة الواقفة. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Grass-Forb-Herb-and-Trees-Mix |
متر | الاحتمالية التي تم تصميمها باستخدام نظام LCMS لمزيج من العشب/النباتات العشبية/الأعشاب والأشجار يتم تعريفها على النحو التالي: تتألف غالبية البكسل من أعشاب معمرة أو نباتات عريضة الأوراق أو أشكال أخرى من النباتات العشبية، كما تتألف من 10% على الأقل من الأشجار الحية أو الميتة. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Barren-and-Trees-Mix |
متر | الاحتمالية النمذجة الأولية لبيانات LCMS الخاصة بمزيج الأراضي القاحلة والأشجار يُعرَّف هذا النوع على أنّه: معظم وحدات البكسل يتألف من تربة عارية مكشوفة بسبب الاضطراب (مثل التربة المكشوفة بسبب إزالة الغطاء النباتي آليًا أو قطع الأشجار)، بالإضافة إلى المناطق القاحلة الدائمة مثل الصحاري والبحيرات الجافة والنتوءات الصخرية (بما في ذلك المعادن والمواد الجيولوجية الأخرى المكشوفة بسبب أنشطة التعدين السطحي) والكثبان الرملية والمسطحات الملحية والشواطئ. تُعدّ الطرق المصنوعة من التراب والحصى أيضًا أراضي قاحلة، وتتألف أيضًا من 10% على الأقل من الأشجار الحية أو الميتة. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Tall-Shrubs |
متر | الاحتمالية النمذجة الأولية لنظام إدارة المحتوى منخفض التكلفة (LCMS) للشجيرات الطويلة (جنوب شرق ألاسكا فقط) يتم تعريفها على النحو التالي: تتألف غالبية وحدات البكسل من شجيرات يزيد ارتفاعها عن متر واحد. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Shrubs |
متر | الاحتمالية التي تمّت محاكاتها باستخدام LCMS لظهور "شجيرات" يتم تعريفها على النحو التالي: تتألف غالبية البكسل من شجيرات. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Grass-Forb-Herb-and-Shrubs-Mix |
متر | الاحتمالية التي تم تصميمها باستخدام بيانات LCMS لخليط من الأعشاب والنباتات العشبية والشجيرات يتم تعريفها على النحو التالي: تتكوّن غالبية البكسل من أعشاب معمرة أو نباتات عريضة الأوراق أو أشكال أخرى من النباتات العشبية، كما تتكوّن أيضًا من 10% على الأقل من الشجيرات. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Barren-and-Shrubs-Mix |
متر | الاحتمالية الناتجة عن نموذج LCMS الخام لمزيج الأراضي القاحلة والشجيرات يُعرَّف هذا النوع على أنّه: معظم وحدات البكسل يتألف من تربة عارية مكشوفة بسبب الاضطراب (مثل التربة المكشوفة بسبب إزالة الغطاء النباتي آليًا أو قطع الأشجار)، بالإضافة إلى المناطق القاحلة الدائمة مثل الصحاري والبحيرات الجافة والنتوءات الصخرية (بما في ذلك المعادن والمواد الجيولوجية الأخرى المكشوفة بسبب أنشطة التعدين السطحي) والكثبان الرملية والمسطحات الملحية والشواطئ. تُصنّف الطرق المصنوعة من التراب والحصى أيضًا على أنّها أراضٍ قاحلة، وتتألف أيضًا من 10% على الأقل من الشجيرات. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Grass-Forb-Herb |
متر | الاحتمالية النموذجية الأولية لفئة "عشب/نبات عريض الأوراق/نبات عشبي" في نظام LCMS يُعرَّف على النحو التالي: يتكوّن الجزء الأكبر من البكسل من أعشاب معمرة أو نباتات عريضة الأوراق أو أشكال أخرى من النباتات العشبية. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Barren-and-Grass-Forb-Herb-Mix |
متر | الاحتمالية التي تمّت محاكاتها باستخدام نظام LCMS الخام لـ "أرض قاحلة" و"مزيج من العشب/النباتات العريضة الأوراق/الأعشاب" يُعرَّف على النحو التالي: يتألف الجزء الأكبر من البكسل من تربة عارية مكشوفة بسبب الاضطراب (مثل التربة المكشوفة بسبب إزالة الغطاء النباتي ميكانيكيًا أو قطع الأشجار)، بالإضافة إلى المناطق القاحلة الدائمة، مثل الصحاري والبحيرات الجافة والنتوءات الصخرية (بما في ذلك المعادن والمواد الجيولوجية الأخرى المكشوفة بسبب أنشطة التعدين السطحي) والكثبان الرملية والمسطحات الملحية والشواطئ. تُعتبر الطرق المصنوعة من التراب والحصى أيضًا أراضي قاحلة، وهي تتألف أيضًا من 10% على الأقل من الأعشاب المعمرة أو النباتات العشبية الأخرى. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Barren-or-Impervious |
متر | الاحتمالية النموذجية الأولية لبيانات LCMS التي تمثّل الأراضي القاحلة أو غير المنفذة يُعرَّف على النحو التالي: تتألف غالبية البكسل من 1) التربة العارية المكشوفة بسبب الاضطراب (مثل التربة المكشوفة بسبب إزالة الغطاء النباتي بشكل ميكانيكي أو قطع الأشجار)، بالإضافة إلى المناطق القاحلة الدائمة، مثل الصحاري والبحيرات الجافة والنتوءات الصخرية (بما في ذلك المعادن والمواد الجيولوجية الأخرى المكشوفة بسبب أنشطة التعدين السطحي) والكثبان الرملية والمسطحات الملحية والشواطئ. تُعدّ الطرق المصنوعة من التراب والحصى أيضًا أراضي قاحلة أو 2) مواد اصطناعية لا يمكن للمياه اختراقها، مثل الطرق الممهَّدة والأسطح ومواقف السيارات. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Snow-or-Ice |
متر | الاحتمالية التي تمّت محاكاتها باستخدام نظام LCMS لتساقط الثلوج أو الجليد يتم تحديدها على النحو التالي: يتكوّن معظم البكسل من ثلج أو جليد. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Water |
متر | الاحتمالية النموذجية الأولية للمياه في LCMS يتم تعريفها على النحو التالي: تتألف غالبية وحدات البكسل من الماء. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Use_Raw_Probability_Agriculture |
متر | الاحتمالية النموذجية غير المعالجة لفئة "الزراعة" في نظام تصنيف المحتوى من LCMS يُعرَّف على أنّه: الأراضي المستخدَمة لإنتاج الغذاء والألياف والوقود، والتي تكون إما في حالة نباتية أو غير نباتية. ويشمل ذلك، على سبيل المثال لا الحصر، الأراضي الزراعية المزروعة وغير المزروعة، وأراضي القش، والبساتين، وكروم العنب، وعمليات تربية الماشية في الحظائر، والمناطق المزروعة لإنتاج الفواكه أو المكسرات أو التوت. تُصنَّف الطرق المستخدَمة بشكل أساسي في الزراعة (أي التي لا تُستخدَم في النقل العام من مدينة إلى أخرى) ضمن استخدامات الأراضي الزراعية. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Use_Raw_Probability_Developed |
متر | الاحتمالية التي تمّ وضع نموذج لها في نظام إدارة التعلّم (LCMS) بشأن حالة "تمّ التطوير" يُعرَّف على أنّه: الأراضي التي تغطيها منشآت من صنع الإنسان (مثل المناطق السكنية أو التجارية أو الصناعية أو التعدينية أو النقلية ذات الكثافة العالية)، أو مزيج من النباتات (بما في ذلك الأشجار) والمنشآت (مثل المناطق السكنية ذات الكثافة المنخفضة أو المروج أو المرافق الترفيهية أو المقابر أو ممرات النقل والمرافق العامة وما إلى ذلك)، بما في ذلك أي أراضٍ تم تغيير وظيفتها بسبب النشاط البشري. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Use_Raw_Probability_Forest |
متر | الاحتمالية الأولية التي تم وضع نموذج لها في LCMS بشأن الغابة يُعرَّف على النحو التالي: أرض مزروعة أو مغطاة بنباتات طبيعية وتحتوي (أو من المحتمل أن تحتوي) على غطاء شجري بنسبة% 10 أو أكثر في وقت ما خلال تسلسل تعاقبي قصير الأجل. وقد يشمل ذلك فئات الغابات الطبيعية النفضية و/أو الدائمة الخضرة و/أو المختلطة، ومزارع الغابات، والأراضي الرطبة المشجّرة. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Use_Raw_Probability_Non-Forest-Wetland |
متر | الاحتمالية الأولية التي تم تصميمها باستخدام نظام LCMS للأراضي الرطبة غير الحرجية يُعرَّف على أنّه: أراضٍ مجاورة أو داخل مستوى مياه جوفية مرئي (مشبعة بشكل دائم أو موسمي) يغلب عليها الشجيرات أو النباتات المائية الدائمة. وقد تقع هذه الأراضي الرطبة على الشاطئ بجوار البحيرات أو قنوات الأنهار أو مصبّات الأنهار، أو على السهول الفيضية للأنهار، أو في مستجمعات مائية معزولة، أو على المنحدرات. وقد تظهر أيضًا على شكل حفر في البراري، وخنادق صرف، وبرك للماشية في المناظر الطبيعية الزراعية، وقد تظهر أيضًا على شكل جزر في وسط البحيرات أو الأنهار. تشمل الأمثلة الأخرى أيضًا المستنقعات والأهوار والمستنقعات الموحلة والمستنقعات الطينية والمستنقعات العشبية والمستنقعات المالحة والمستنقعات الحمضية والمستنقعات المائية. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Use_Raw_Probability_Other |
متر | الاحتمالية التي تمّت محاكاتها باستخدام LCMS لفئة "غير ذلك" يُعرَّف على أنّه: أرض (بغض النظر عن استخدامها) يشير فيها المؤشر الطيفي أو غيره من الأدلة الداعمة إلى حدوث اضطراب أو تغيير، ولكن لا يمكن تحديد السبب النهائي أو لا يستوفي نوع التغيير أيًا من فئات عملية التغيير المحددة أعلاه. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Use_Raw_Probability_Rangeland-or-Pasture |
متر | الاحتمالية التي تم تصميمها باستخدام نظام LCMS للأراضي العشبية أو المراعي يتم تعريفها على النحو التالي: تشمل هذه الفئة أي منطقة تكون إما: الأراضي العشبية التي تتكوّن فيها النباتات من مزيج من الأعشاب والشجيرات والنباتات العريضة الأوراق والنباتات الشبيهة بالأعشاب التي تنشأ إلى حد كبير من عوامل وعمليات طبيعية، مثل هطول الأمطار ودرجة الحرارة والارتفاع والحرائق، على الرغم من أنّ الإدارة المحدودة قد تشمل الحرق الموصوف بالإضافة إلى الرعي من قِبل الحيوانات العاشبة الأليفة والبرية؛ أو ب) المراعي، حيث قد تتراوح النباتات من أعشاب مختلطة وطبيعية إلى حد كبير، ونباتات عريضة الأوراق وأعشاب إلى نباتات مُدارة أكثر، وتهيمن عليها أنواع الأعشاب التي تم زرعها وإدارتها للحفاظ على الزراعة الأحادية تقريبًا |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
QA_Bits |
متر | معلومات إضافية حول مصدر قيم الناتج السنوي لمنتج LCMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
تغيير جدول الصف
| القيمة | اللون | الوصف |
|---|---|---|
| 1 | #3d4551 | إسطبل |
| 2 | #f39268 | الخسارة البطيئة |
| 3 | #d54309 | فقدان سريع |
| 4 | #00a398 | المكسب |
| 5 | #1b1716 | Non-Processing Area Mask |
جدول فئات Land_Cover
| القيمة | اللون | الوصف |
|---|---|---|
| 1 | #005e00 | الأشجار |
| 2 | #008000 | مزيج من الشجيرات والأشجار الطويلة (جنوب شرق آسيا فقط) |
| 3 | #00cc00 | تشكيلة من الشجيرات والأشجار |
| 4 | #b3ff1a | مزيج من الأعشاب والأشجار |
| 5 | #99ff99 | Barren & Trees Mix |
| 6 | #b30088 | الشجيرات الطويلة (جنوب شرق آسيا فقط) |
| 7 | #e68a00 | شجيرات |
| 8 | #ffad33 | مزيج من الأعشاب والشجيرات |
| 9 | #ffe0b3 | مزيج من الأراضي القاحلة والشجيرات |
| 10 | #ffff00 | عشب/نبات عريض الأوراق/نبات |
| 11 | #aa7700 | التربة القاحلة ومزيج من الأعشاب والنباتات العشبية |
| 12 | #d3bf9b | أرض قاحلة أو غير منفذة |
| 13 | #ffffff | جليد أو ثلوج |
| 14 | #4780f3 | ماء |
| 15 | #1b1716 | Non-Processing Area Mask |
جدول فئات Land_Use
| القيمة | اللون | الوصف |
|---|---|---|
| 1 | #efff6b | زراعة |
| 2 | #ff2ff8 | تم تطويره |
| 3 | #1b9d0c | غابة |
| 4 | #97ffff | الأراضي الرطبة غير الحرجية |
| 5 | #a1a1a1 | غير ذلك |
| 6 | #c2b34a | أراضٍ عشبية أو مراعٍ |
| 7 | #1b1716 | Non-Processing Area Mask |
خصائص الصور
خصائص الصور
| الاسم | النوع | الوصف |
|---|---|---|
| study_area | سلسلة | تغطي خدمة LCMS حاليًا الولايات المتحدة المتجاورة وجنوب شرق ألاسكا وبورتوريكو وجزر فيرجن التابعة للولايات المتحدة وهاواي. يحتوي هذا الإصدار على نواتج في جميع أنحاء الولايات المتحدة المتجاورة وجنوب شرق ألاسكا وبورتوريكو وجزر فيرجن وهاواي. القيم المحتملة: CONUS أو SEAK أو PRUSVI أو HI |
| سنة | INT | عام المنتج |
بنود الاستخدام
بنود الاستخدام
لا تقدّم "خدمة الغابات" التابعة لوزارة الزراعة الأمريكية أي ضمان، صريحًا أو ضمنيًا، بما في ذلك ضمانات الصلاحية للتسويق والملاءمة لغرض معيّن، ولا تتحمّل أي مسؤولية قانونية أو مسؤولية عن دقة هذه البيانات الجغرافية المكانية أو موثوقيتها أو اكتمالها أو فائدتها، أو عن الاستخدام غير السليم أو غير الصحيح لهذه البيانات الجغرافية المكانية. إنّ هذه البيانات الجغرافية المكانية والخرائط أو الرسومات ذات الصلة ليست مستندات قانونية، ولا يُراد استخدامها على هذا النحو. لا يجوز استخدام البيانات والخرائط لتحديد الملكية أو الأوصاف القانونية أو الحدود أو الولاية القضائية أو القيود التي قد تكون مفروضة على الأراضي العامة أو الخاصة. قد يتم أو لا يتم عرض المخاطر الطبيعية في البيانات والخرائط، وعلى مستخدمي الأراضي توخّي الحذر اللازم. البيانات ديناميكية وقد تتغيّر بمرور الوقت. يتحمّل المستخدم مسؤولية التحقّق من قيود البيانات الجغرافية المكانية واستخدام البيانات وفقًا لذلك.
تم جمع هذه البيانات باستخدام تمويل من حكومة الولايات المتحدة ويمكن استخدامها بدون أذونات أو رسوم إضافية. إذا كنت تستخدم هذه البيانات في منشور أو عرض تقديمي أو أي منتج بحثي آخر، يُرجى استخدام الاقتباس التالي:
خدمة الغابات التابعة لوزارة الزراعة الأمريكية 2024 USFS Landscape Change Monitoring System v2023.9 (Conterminous United States and Outer Conterminous United States). سولت ليك سيتي، يوتا
الاقتباسات
خدمة الغابات التابعة لوزارة الزراعة الأمريكية 2024 USFS Landscape Change Monitoring System v2023.9 (Conterminous United States and Outer Conterminous United States). سولت ليك سيتي، يوتا
Breiman, L., 2001. الغابات العشوائية في "تعلُّم الآلة" Springer, 45: 5-32. doi:10.1023/A:1010933404324
Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K., 2019 مقارنة تجريبية بين أجهزة استشعار مختلفة، وهي Sentinel-2A و2B MSI وLandsat-8 OLI وLandsat-7 ETM، من حيث الخصائص الطيفية في أعلى الغلاف الجوي فوق الولايات المتحدة المتجاورة In Remote Sensing of Environment. Science Direct, 221: 274-285. doi:10.1016/j.rse.2018.11.012
Cohen, W. B., Yang, Z., and Kennedy, R., 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - أدوات للمعايرة والتحقّق من الصحة In Remote Sensing of Environment. Science Direct, 114(12): 2911-2924. doi:10.1016/j.rse.2010.07.010
Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N., 2018. مجموعة متعددة الأطياف من LandTrendr لرصد اضطراب الغابات In Remote Sensing of Environment. Science Direct, 205: 131-140. doi:10.1016/j.rse.2017.11.015
Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B., 2017. مقارنة خوارزميات رصد السحب والتحقّق منها لمنتجات بيانات Landsat التشغيلية In Remote Sensing of Environment. Science Direct, 194: 379-390. doi:10.1016/j.rse.2017.03.026
مصلحة المساحة الجيولوجية في الولايات المتحدة، 2019. USGS 3D Elevation Program Digital Elevation Model، تم الوصول إليه في أغسطس 2022 على الرابط https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10m
Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., جوزيف هيوز، دكتوراه Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z., 2018. تحديد التغيّرات في الغابات باستخدام التعميم المكدّس: نهج قائم على التجميع In Remote Sensing of Environment. Science Direct, 204: 717-728. doi:10.1016/j.rse.2017.09.029
Kennedy, R. E., Yang, Z., and Cohen, W. B., 2010. رصد المؤشرات في اضطراب الغابات وتعافيها باستخدام السلاسل الزمنية السنوية لبيانات Landsat: 1. LandTrendr - خوارزميات التقسيم الزمني In Remote Sensing of Environment. Science Direct, 114(12): 2897-2910. doi:10.1016/j.rse.2010.07.008
Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. 2018. تطبيق خوارزمية LandTrendr على Google Earth Engine في الاستشعار عن بُعد MDPI، 10(5): 691. doi:10.3390/rs10050691
Pasquarella, V. J., Brown, C. F., Czerwinski, W., and Rucklidge, W. J., 2023. Comprehensive Quality Assessment of Optical Satellite Imagery Using Weakly Supervised Video Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2125-2135. doi:10.1109/CVPRW59228.2023.00206
Sentinel-Hub، 2021 Sentinel 2 Cloud Detector [على الإنترنت]. متوفّر على: https://github.com/sentinel-hub/sentinel2-cloud-detector
Weiss, A.D., 2001. Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. 2012. رصد السحب وظلالها في صور Landsat استنادًا إلى العناصر 118: 83-94.
Zhu, Z., and Woodcock, C. E., 2012. رصد السحب وظلالها في صور Landsat استنادًا إلى العناصر In Remote Sensing of Environment. Science Direct, 118: 83-94. doi:10.1016/j.rse.2011.10.028
Zhu, Z., and Woodcock, C. E., 2014. رصد التغيّرات المستمرة وتصنيف الغطاء الأرضي باستخدام جميع بيانات Landsat المتاحة In Remote Sensing of Environment. Science Direct, 144: 152-171. doi:10.1016/j.rse.2014.01.011
معرِّفات العناصر الرقمية (DOI)
- https://doi.org/10.1016/j.rse.2010.07.008
- https://doi.org/10.1016/j.rse.2010.07.010
- https://doi.org/10.1016/j.rse.2011.10.028
- https://doi.org/10.1016/j.rse.2014.01.011
- https://doi.org/10.1016/j.rse.2017.03.026
- https://doi.org/10.1016/j.rse.2017.09.029
- https://doi.org/10.1016/j.rse.2017.11.015
- https://doi.org/10.1016/j.rse.2018.11.012
- https://doi.org/10.1023/A:1010933404324
- https://doi.org/10.1109/CVPRW59228.2023.00206
- https://doi.org/10.3390/rs10050691
الاستكشاف باستخدام Earth Engine
أداة تعديل الرموز (JavaScript)
var dataset = ee.ImageCollection('USFS/GTAC/LCMS/v2023-9'); var lcms = dataset.filterDate('2021', '2022') // range: [1985, 2023] .filter('study_area == "CONUS"') // or "SEAK"; "PRUSVI"; "HAWAII" .first(); Map.addLayer(lcms.select('Land_Cover'), {}, 'Land Cover'); Map.addLayer(lcms.select('Land_Use'), {}, 'Land Use'); Map.addLayer(lcms.select('Change'), {}, 'Vegetation Change', false); Map.setCenter(-98.58, 38.14, 4);