- ความพร้อมใช้งานของชุดข้อมูล
- 1985-06-01T00:00:00Z–2021-09-30T00:00:00Z
- ผู้ผลิตชุดข้อมูล
- ศูนย์เทคโนโลยีและแอปพลิเคชันเชิงพื้นที่ (GTAC) ของกรมป่าไม้แห่งสหรัฐอเมริกา (USFS) Google Earth Engine
- แท็ก
คำอธิบาย
ผลิตภัณฑ์นี้เป็นส่วนหนึ่งของชุดข้อมูลระบบการตรวจสอบการเปลี่ยนแปลงของภูมิประเทศ (LCMS) โดยจะแสดงการเปลี่ยนแปลงที่จำลองด้วย LCMS, สิ่งปกคลุมดิน และ/หรือประเภทการใช้ที่ดิน สำหรับแต่ละปี LCMS เวอร์ชันนี้ครอบคลุมสหรัฐอเมริกาภาคพื้นทวีป (CONUS) และอลาสก้าตะวันออกเฉียงใต้ (SEAK)
LCMS เป็นระบบที่ใช้การรับรู้จากระยะไกลสำหรับการทำแผนที่และการตรวจสอบการเปลี่ยนแปลงของภูมิประเทศ ทั่วสหรัฐอเมริกา โดยมีวัตถุประสงค์เพื่อพัฒนาแนวทางที่สอดคล้องกันโดยใช้เทคโนโลยีล่าสุดและความก้าวหน้าในการตรวจหาการเปลี่ยนแปลงเพื่อสร้างแผนที่การเปลี่ยนแปลงของภูมิทัศน์ที่ "ดีที่สุด"
เอาต์พุตประกอบด้วยผลิตภัณฑ์รายปี 3 รายการ ได้แก่ การเปลี่ยนแปลง สิ่งปกคลุมดิน และการใช้ที่ดิน การเปลี่ยนแปลงเกี่ยวข้องกับพืชปกคลุมโดยเฉพาะ และรวมถึงการสูญเสียอย่างช้าๆ การสูญเสียอย่างรวดเร็ว (ซึ่งรวมถึงการเปลี่ยนแปลงทางอุทกวิทยา เช่น น้ำท่วมหรือการแห้งแล้ง) และการเพิ่มขึ้น ค่าเหล่านี้คาดการณ์ไว้สำหรับแต่ละปีของอนุกรมเวลา Landsat และทำหน้าที่เป็นผลิตภัณฑ์พื้นฐานสำหรับ LCMS แผนที่การปกคลุมของดินและแผนที่การใช้ที่ดินแสดงการปกคลุมของดินระดับรูปแบบสิ่งมีชีวิตและการใช้ที่ดินระดับกว้าง สำหรับแต่ละปี
เนื่องจากไม่มีอัลกอริทึมใดที่ทำงานได้ดีที่สุดในทุกสถานการณ์ LCMS จึงใช้กลุ่มโมเดลเป็นตัวคาดการณ์ ซึ่งจะช่วยปรับปรุงความแม่นยำของแผนที่ในระบบนิเวศและกระบวนการเปลี่ยนแปลงต่างๆ (Healey et al., 2018) ชุดแผนที่ LCMS ที่เปลี่ยนแปลง สิ่งปกคลุมดิน และการใช้ที่ดินที่ได้ แสดงภาพรวมของการเปลี่ยนแปลงภูมิทัศน์ทั่วสหรัฐอเมริกาในช่วง 4 ทศวรรษที่ผ่านมา
เลเยอร์ตัวแปรทำนายสำหรับโมเดล LCMS ประกอบด้วยเอาต์พุตจากอัลกอริทึมการตรวจหาการเปลี่ยนแปลง LandTrendr และ CCDC รวมถึงข้อมูลภูมิประเทศ คอมโพเนนต์เหล่านี้ เข้าถึงและประมวลผลโดยใช้ Google Earth Engine (Gorelick et al., 2017)
ข้อมูลการสะท้อนที่ด้านบนของชั้นบรรยากาศระดับ 1C ของ Landsat Tier 1 และ Sentinel 2A, 2B จะใช้โดยตรงใน CCDC และเพื่อสร้างภาพคอมโพสิตรายปีสำหรับ LandTrendr อัลกอริทึมการมาสก์เมฆ cFmask (Foga และคณะ 2017) ซึ่งเป็นการใช้งาน Fmask 2.0 (Zhu and Woodcock, 2012) (Landsat เท่านั้น) cloudScore (Chastain et al., 2019) (Landsat เท่านั้น) และ s2cloudless (Sentinel-Hub, 2021) (Sentinel 2 เท่านั้น) ใช้เพื่อมาสก์เมฆ ส่วน TDOM (Chastain et al., 2019) ใช้เพื่อมาสก์เงาเมฆ (Landsat และ Sentinel 2) สำหรับ LandTrendr ระบบจะคำนวณเมดอยด์รายปีเพื่อสรุปค่าที่ไม่มีเมฆ และเงาเมฆจากแต่ละปีเป็นคอมโพสิตเดียว
อนุกรมเวลาแบบผสมจะแบ่งส่วนตามเวลาโดยใช้ LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018)
นอกจากนี้ ค่าที่ไม่มีเมฆและเงาเมฆทั้งหมดจะได้รับการแบ่งส่วนตามเวลาโดยใช้อัลกอริทึม CCDC (Zhu and Woodcock, 2014)
ค่าคอมโพสิตดิบ ค่าที่ปรับ LandTrendr ความแตกต่างแบบคู่ ระยะเวลาของกลุ่ม ขนาดของการเปลี่ยนแปลง และความชัน รวมถึงสัมประสิทธิ์ไซน์และ โคไซน์ของ CCDC ในเดือนกันยายน (ฮาร์มอนิก 3 รายการแรก) ค่าที่ปรับ และความแตกต่างแบบคู่ พร้อมด้วยระดับความสูง ความชัน ไซน์ของมุมระนาบ โคไซน์ของมุมระนาบ และดัชนีตำแหน่งภูมิประเทศ (Weiss, 2001) จากชุดข้อมูลระดับความสูงแห่งชาติ (National Elevation Dataset หรือ NED) ขนาด 10 ม. (Gesch และคณะ 2009) และสำหรับ SEAK จะใช้ NED 30 ม. เป็นตัวแปรอิสระในการคาดการณ์ในโมเดล Random Forest (Breiman, 2001)
เราเก็บรวบรวมข้อมูลอ้างอิงโดยใช้ TimeSync ซึ่งเป็นเครื่องมือบนเว็บที่ช่วยให้นักวิเคราะห์เห็นภาพและตีความบันทึกข้อมูล Landsat ตั้งแต่ปี 1984 จนถึงปัจจุบัน (Cohen et al., 2010)
แหล่งข้อมูลเพิ่มเติม
โปรแกรมสำรวจข้อมูล LCMS เป็นแอปพลิเคชันบนเว็บที่ช่วยให้ผู้ใช้ดู วิเคราะห์ สรุป และดาวน์โหลดข้อมูล LCMS ได้
โปรดดูข้อมูลโดยละเอียดเกี่ยวกับวิธีการและการประเมินความแม่นยำในสรุปวิธีการ LCMS หรือศูนย์แลกเปลี่ยนข้อมูลทางภูมิศาสตร์ของ LCMS เพื่อดาวน์โหลดข้อมูล ข้อมูลเมตา และเอกสารสนับสนุน
หากมีคำถามหรือต้องการข้อมูลเฉพาะ โปรดติดต่อ [sm.fs.lcms@usda.gov] * Breiman, L., 2001 Random Forests ในแมชชีนเลิร์นนิง Springer, 45: 5-32 doi:10.1023/A:1010933404324
Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K., 2019 การเปรียบเทียบเซ็นเซอร์ข้ามแบบเชิงประจักษ์ของ MSI ของ Sentinel-2A และ 2B, OLI ของ Landsat-8 และ ETM ของ Landsat-7 ลักษณะสเปกตรัมที่ด้านบนของชั้นบรรยากาศเหนือสหรัฐอเมริกาที่อยู่ติดกัน ใน Remote Sensing of Environment Science Direct, 221: 274-285 doi:10.1016/j.rse.2018.11.012
Cohen, W. B., Yang, Z., and Kennedy, R., 2010 การตรวจหาแนวโน้มการรบกวนและการฟื้นตัวของป่าโดยใช้ชุดข้อมูลอนุกรมเวลา Landsat รายปี: 2. TimeSync - เครื่องมือสำหรับการปรับและการตรวจสอบ ใน Remote Sensing of Environment Science Direct, 114(12): 2911-2924 doi:10.1016/j.rse.2010.07.010
Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N., 2018 ชุดข้อมูลหลายสเปกตรัมของ LandTrendr สำหรับการตรวจหาการรบกวนป่า ในการสำรวจระยะไกลของ สิ่งแวดล้อม Science Direct, 205: 131-140 doi:10.1016/j.rse.2017.11.015
Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B., 2017 การเปรียบเทียบและการตรวจสอบอัลกอริทึมการตรวจหาเมฆ สำหรับผลิตภัณฑ์ข้อมูล Landsat ที่ใช้งานได้ ใน Remote Sensing of Environment Science Direct, 194: 379-390 doi:10.1016/j.rse.2017.03.026
Gesch, D., Evans, G., Mauck, J., Hutchinson, J., และ Carswell, W. J., 2009 แผนที่แห่งชาติ - ระดับความสูง ในเอกสารข้อเท็จจริง doi:10.3133/fs20093053
Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z., 2018 การทำแผนที่การเปลี่ยนแปลงของป่าโดยใช้การสรุปแบบซ้อน: แนวทางแบบกลุ่ม ในการสำรวจระยะไกลของ สิ่งแวดล้อม Science Direct, 204: 717-728 doi:10.1016/j.rse.2017.09.029
Kennedy, R. E., Yang, Z., and Cohen, W. B., 2010 การตรวจหาแนวโน้มการรบกวนและการฟื้นตัวของป่าโดยใช้ชุดข้อมูลอนุกรมเวลา Landsat รายปี: 1. LandTrendr - อัลกอริทึมการแบ่งกลุ่มตามเวลา ใน Remote Sensing of Environment Science Direct, 114(12): 2897-2910 doi:10.1016/j.rse.2010.07.008
Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W. และ Healey, S., 2018 การติดตั้งใช้งานอัลกอริทึม LandTrendr ใน Google Earth Engine ในการรับรู้จากระยะไกล MDPI, 10(5): 691 doi:10.3390/rs10050691
Sentinel-Hub, 2021 Sentinel 2 Cloud Detector [ออนไลน์] ดูได้ที่ https://github.com/sentinel-hub/sentinel2-cloud-detector
Weiss, A.D., 2001 การนำเสนอโปสเตอร์การวิเคราะห์ตำแหน่งภูมิประเทศและภูมิประเทศ การประชุมผู้ใช้ ESRI ซานดิเอโก แคลิฟอร์เนีย
Zhu, Z., and Woodcock, C. E. (2012) การตรวจจับเมฆและเงาเมฆตามออบเจ็กต์ในภาพ Landsat ในการสำรวจระยะไกลของ สิ่งแวดล้อม Science Direct, 118: 83-94 doi:10.1016/j.rse.2011.10.028
Zhu, Z., and Woodcock, C. E., 2014 การตรวจหาการเปลี่ยนแปลงและการแยกประเภทสิ่งปกคลุมดินอย่างต่อเนื่องโดยใช้ข้อมูล Landsat ทั้งหมดที่มี ใน Remote Sensing of Environment Science Direct, 144: 152-171 doi:10.1016/j.rse.2014.01.011
ย่านความถี่
ขนาดพิกเซล
30 เมตร
ย่านความถี่
| ชื่อ | ขนาดพิกเซล | คำอธิบาย | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Change |
เมตร | ผลิตภัณฑ์เปลี่ยน LCMS ตามธีมขั้นสุดท้าย ระบบจะแมปคลาสการเปลี่ยนแปลงทั้งหมด 3 คลาส (การสูญเสียช้า การสูญเสียเร็ว และการเพิ่มขึ้น) สำหรับแต่ละปี ระบบจะคาดการณ์แต่ละคลาส โดยใช้โมเดล Random Forest แยกต่างหาก ซึ่งจะแสดงผล ความน่าจะเป็น (สัดส่วนของต้นไม้ภายในโมเดล Random Forest) ที่พิกเซลเป็นของคลาสนั้น ด้วยเหตุนี้ พิกเซลแต่ละรายการจึงมีเอาต์พุตโมเดลที่แตกต่างกัน 3 รายการสำหรับแต่ละปี ระบบจะกำหนดชั้นเรียนสุดท้าย ให้กับชั้นเรียนการเปลี่ยนแปลงที่มีความน่าจะเป็นสูงสุดซึ่ง สูงกว่าเกณฑ์ที่ระบุด้วย พิกเซลที่ไม่มีค่าใดๆ สูงกว่าเกณฑ์ที่เกี่ยวข้องของแต่ละคลาสจะได้รับการกำหนดให้เป็น คลาสคงที่ |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover |
เมตร | ผลิตภัณฑ์สิ่งปกคลุมดิน LCMS ตามธีมสุดท้าย เราจะแมปชั้นข้อมูลปกคลุมดินทั้งหมด 14 ชั้นในแต่ละปีโดยใช้ข้อมูลอ้างอิง TimeSync และข้อมูลสเปกตรัมที่ได้จากภาพ Landsat แต่ละคลาสจะ ได้รับการคาดการณ์โดยใช้โมเดล Random Forest แยกต่างหาก ซึ่งจะแสดงผล ความน่าจะเป็น (สัดส่วนของต้นไม้ภายในโมเดล Random Forest) ที่พิกเซลเป็นของคลาสนั้น ด้วยเหตุนี้ พิกเซลแต่ละพิกเซลจึงมีเอาต์พุตโมเดลที่แตกต่างกัน 14 รายการในแต่ละปี และระบบจะกำหนดคลาสสุดท้ายให้กับสิ่งปกคลุมดินที่มีความน่าจะเป็นสูงสุด การปกคลุมพื้นดิน 7 ใน 14 คลาสแสดงการปกคลุมพื้นดินเดียว ซึ่งประเภทการปกคลุมพื้นดินนั้นครอบคลุมพื้นที่ส่วนใหญ่ของพิกเซล และไม่มีคลาสอื่นใดครอบคลุมมากกว่า 10% ของพิกเซล นอกจากนี้ ยังมีชั้นเรียนแบบผสมอีก 7 ชั้นเรียน ซึ่งแสดงถึงพิกเซลที่มีชั้นปกคลุมดินเพิ่มเติมซึ่งครอบคลุมอย่างน้อย 10% ของพิกเซล |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Use |
เมตร | ผลิตภัณฑ์การใช้ที่ดิน LCMS ตามธีมสุดท้าย เราจัดทำแผนที่การใช้ประโยชน์ที่ดินทั้งหมด 6 ประเภท เป็นประจำทุกปีโดยใช้ข้อมูลอ้างอิง TimeSync และ ข้อมูลสเปกตรัมที่ได้จากภาพ Landsat แต่ละคลาสจะ ได้รับการคาดการณ์โดยใช้โมเดล Random Forest แยกต่างหาก ซึ่งจะแสดงผล ความน่าจะเป็น (สัดส่วนของต้นไม้ภายในโมเดล Random Forest) ที่พิกเซลเป็นของคลาสนั้น ด้วยเหตุนี้ พิกเซลแต่ละพิกเซลจึงมีเอาต์พุตโมเดลที่แตกต่างกัน 6 รายการในแต่ละปี และระบบจะกำหนดคลาสสุดท้าย ให้กับประเภทการใช้ที่ดินที่มีความน่าจะเป็นสูงสุด |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Change_Raw_Probability_Slow_Loss |
เมตร | ความน่าจะเป็นของอัตราการสูญเสียลูกค้าอย่างช้าๆ ที่ได้จากการประมาณ LCMS ดิบ กำหนดเป็น: การสูญเสียช้า รวมถึงคลาสต่อไปนี้จากกระบวนการเปลี่ยนแปลง TimeSync การตีความ -
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Change_Raw_Probability_Fast_Loss |
เมตร | ความน่าจะเป็นของ Fast Loss ที่จำลองโดย LCMS ดิบ กำหนดเป็น: การสูญเสียอย่างรวดเร็ว รวมถึงคลาสต่อไปนี้จากกระบวนการเปลี่ยนแปลง TimeSync การตีความ -
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Change_Raw_Probability_Gain |
เมตร | ความน่าจะเป็นของการได้ลูกค้าใหม่ที่ผ่านการประมาณ LCMS ดิบ กำหนดเป็น: พื้นที่ที่มี การเพิ่มขึ้นของพืชปกคลุมเนื่องจากการเติบโตและการเปลี่ยนแปลงในช่วงเวลาหนึ่งหรือ มากกว่าหนึ่งปี ใช้ได้กับพื้นที่ใดก็ตามที่อาจแสดงการเปลี่ยนแปลงของสเปกตรัม ซึ่งเกี่ยวข้องกับการงอกใหม่ของพืช ในพื้นที่ที่มีการพัฒนาแล้ว การเติบโตอาจเกิดจาก พืชพรรณที่โตเต็มวัยและ/หรือสนามหญ้าและ การจัดสวนที่เพิ่งติดตั้งใหม่ ในป่า การเติบโตหมายถึงการเติบโตของพืชพรรณจากพื้นดินที่ว่างเปล่า รวมถึงการเติบโตของต้นไม้ขนาดกลางและต้นไม้ที่ขึ้นร่วมกัน และ/หรือหญ้าและพุ่มไม้ที่อยู่ต่ำกว่า กลุ่มการเติบโต/การฟื้นตัว ที่บันทึกไว้หลังจากการเก็บเกี่ยวป่ามีแนวโน้มที่จะเปลี่ยนผ่าน ไปยังชั้นปกคลุมดินที่แตกต่างกันเมื่อป่าฟื้นตัว การเปลี่ยนแปลงเหล่านี้ จะถือเป็นการเติบโต/การฟื้นตัวได้ ค่าสเปกตรัมควร เป็นไปตามเส้นแนวโน้มที่เพิ่มขึ้นอย่างใกล้ชิด (เช่น ความชันที่เป็นบวกซึ่ง หากขยายไปถึงประมาณ 20 ปี จะมีค่าประมาณ 0.10 หน่วยของ NDVI) ซึ่งคงอยู่เป็นเวลาหลายปี |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Trees |
เมตร | ความน่าจะเป็นของต้นไม้ที่จำลอง LCMS ดิบ กำหนดเป็น: พิกเซลส่วนใหญ่ประกอบด้วยต้นไม้ที่ยังมีชีวิตอยู่หรือตายแล้ว |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Tall-Shrubs-and-Trees-Mix |
เมตร | ความน่าจะเป็นของ LCMS ดิบที่จำลองของ Tall Shrubs and Trees Mix (SEAK เท่านั้น) กำหนดเป็น: พิกเซลส่วนใหญ่ประกอบด้วยพุ่มไม้ที่มีความสูงมากกว่า 1 เมตร และประกอบด้วยต้นไม้ที่ยังมีชีวิตหรือต้นไม้ที่ตายแล้วอย่างน้อย 10% |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Shrubs-and-Trees-Mix |
เมตร | ความน่าจะเป็นของพุ่มไม้และต้นไม้ผสมที่จำลอง LCMS ดิบ กำหนดเป็น: พิกเซลส่วนใหญ่ประกอบด้วยพุ่มไม้ และประกอบด้วยต้นไม้ที่ยังมีชีวิตหรือต้นไม้ที่ตายแล้วซึ่งยังยืนต้นอยู่อย่างน้อย 10% |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Grass-Forb-Herb-and-Trees-Mix |
เมตร | ความน่าจะเป็นของหญ้า/พืชล้มลุก/สมุนไพรและต้นไม้ผสมที่จำลองจาก LCMS ดิบ กำหนด เป็น: พิกเซลส่วนใหญ่ประกอบด้วยหญ้าไม้ยืนต้น ไม้ดอก หรือพืชล้มลุกอื่นๆ และยังประกอบด้วย ต้นไม้ที่ยังมีชีวิตอยู่หรือยืนต้นตายอย่างน้อย 10% |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Barren-and-Trees-Mix |
เมตร | ความน่าจะเป็นของพื้นที่แห้งแล้งและพื้นที่ที่มีต้นไม้ผสมกันที่ได้จาก LCMS ดิบ กำหนดเป็น: พิกเซลส่วนใหญ่ประกอบด้วยดินเปล่าที่เกิดจากการรบกวน (เช่น ดินที่เกิดจากการเคลียร์พื้นที่ด้วยเครื่องจักรหรือการเก็บเกี่ยวในป่า) รวมถึงพื้นที่แห้งแล้งตลอดปี เช่น ทะเลทราย เพลยา โขดหิน (รวมถึงแร่ธาตุและวัสดุทางธรณีวิทยาอื่นๆ ที่เกิดจากกิจกรรมการทำเหมืองบนพื้นผิว) เนินทราย ที่ราบเกลือ และชายหาด ถนนที่ทำจากดินและกรวดก็ถือเป็นพื้นที่แห้งแล้งเช่นกัน และประกอบด้วยต้นไม้ที่ยังมีชีวิตหรือต้นไม้ที่ตายแล้วอย่างน้อย 10% |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Tall-Shrubs |
เมตร | ความน่าจะเป็นของพุ่มไม้สูงที่จำลอง LCMS ดิบ (SEAK เท่านั้น) กำหนดเป็น พิกเซลส่วนใหญ่ประกอบด้วยพุ่มไม้ที่มีความสูงมากกว่า 1 เมตร |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Shrubs |
เมตร | ความน่าจะเป็นของพุ่มไม้ที่จำลอง LCMS ดิบ กำหนดเป็น: พุ่มไม้ส่วนใหญ่ ประกอบด้วยพิกเซล |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Grass-Forb-Herb-and-Shrubs-Mix |
เมตร | ความน่าจะเป็นของหญ้า/พืชล้มลุก/สมุนไพรและพุ่มไม้ ผสมที่จำลองตาม LCMS ดิบ กำหนดเป็น: พิกเซลส่วนใหญ่ประกอบด้วยหญ้า ไม้ล้มลุก หรือพืชสมุนไพรอื่นๆ และประกอบด้วยพุ่มไม้อย่างน้อย 10% |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Barren-and-Shrubs-Mix |
เมตร | ความน่าจะเป็นของ Barren และ Shrubs Mix ที่จำลอง LCMS ดิบ กำหนดเป็น: พิกเซลส่วนใหญ่ประกอบด้วยดินเปล่าที่เกิดจากการรบกวน (เช่น ดินที่เกิดจากการเคลียร์พื้นที่ด้วยเครื่องจักรหรือการเก็บเกี่ยวในป่า) รวมถึงพื้นที่แห้งแล้งตลอดปี เช่น ทะเลทราย เพลยา โขดหิน (รวมถึงแร่ธาตุและวัสดุทางธรณีวิทยาอื่นๆ ที่เกิดจากกิจกรรมการทำเหมืองบนพื้นผิว) เนินทราย ที่ราบเกลือ และชายหาด ถนนที่ทำจากดินและกรวดก็ถือเป็นพื้นที่แห้งแล้งและประกอบด้วยพุ่มไม้อย่างน้อย 10% |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Grass-Forb-Herb |
เมตร | ความน่าจะเป็นของหญ้า/พืชล้มลุก/สมุนไพรที่จำลองจาก LCMS ดิบ กำหนดเป็น: พิกเซลส่วนใหญ่ประกอบด้วยหญ้าไม้ยืนต้น ไม้ดอก หรือ พืชสมุนไพรในรูปแบบอื่นๆ |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Barren-and-Grass-Forb-Herb-Mix |
เมตร | ความน่าจะเป็นของ LCMS ดิบที่จำลองของ Barren และ Grass/Forb/Herb Mix กำหนดเป็น: พิกเซลส่วนใหญ่ประกอบด้วยดินเปล่าที่เกิดจากการรบกวน (เช่น ดินที่เกิดจากการเคลียร์พื้นที่ด้วยเครื่องจักรหรือการเก็บเกี่ยวในป่า) รวมถึงพื้นที่แห้งแล้งตลอดปี เช่น ทะเลทราย ที่ราบเกลือ โขดหิน (รวมถึงแร่ธาตุและวัสดุทางธรณีวิทยาอื่นๆ ที่เกิดจากกิจกรรมการทำเหมืองบนพื้นผิว) เนินทราย ที่ราบเกลือ และชายหาด ถนนที่ทำจากดินและกรวดจะถือว่าเป็นพื้นที่แห้งแล้งและประกอบด้วยหญ้าไม้ยืนต้น ไม้ดอก หรือพืชล้มลุกอื่นๆ อย่างน้อย 10% |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Barren-or-Impervious |
เมตร | ความน่าจะเป็นที่โมเดล LCMS ดิบระบุว่าไม่มีพืชหรือเป็นพื้นผิวที่ไม่ซึมน้ำ กำหนดเป็น: พิกเซลส่วนใหญ่ประกอบด้วย 1) ดินเปล่าที่เกิดจากการรบกวน (เช่น ดินที่ไม่มีพืชปกคลุมเนื่องจากการถางโดยใช้เครื่องจักรหรือการเก็บเกี่ยวในป่า) รวมถึงพื้นที่แห้งแล้งตลอดปี เช่น ทะเลทราย ที่ราบน้ำตื้น โขดหิน (รวมถึงแร่ธาตุและวัสดุทางธรณีวิทยาอื่นๆ ที่เกิดจากกิจกรรมการทำเหมืองบนพื้นผิว) เนินทราย ที่ราบเกลือ และชายหาด นอกจากนี้ ถนนที่ทำจากดินและกรวดยังถือเป็นพื้นที่แห้งแล้งหรือ 2) วัสดุที่มนุษย์สร้างขึ้นซึ่งน้ำไม่สามารถซึมผ่านได้ เช่น ถนนลาดยาง หลังคา และที่จอดรถ |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Snow-or-Ice |
เมตร | ความน่าจะเป็นของหิมะหรือน้ำแข็งที่จำลองจาก LCMS ดิบ กำหนดเป็น: พิกเซลส่วนใหญ่ ประกอบด้วยหิมะหรือน้ำแข็ง |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Cover_Raw_Probability_Water |
เมตร | ความน่าจะเป็นของน้ำที่จำลอง LCMS ดิบ โดยมีคำจำกัดความว่า: พิกเซลส่วนใหญ่ประกอบด้วยน้ำ |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Use_Raw_Probability_Agriculture |
เมตร | ความน่าจะเป็นของเกษตรกรรมที่จำลอง LCMS ดิบ กำหนดเป็นที่ดินที่ใช้สำหรับ การผลิตอาหาร เส้นใย และเชื้อเพลิง ซึ่งอยู่ในสถานะที่มีพืชปกคลุม หรือไม่มีพืชปกคลุม ซึ่งรวมถึงแต่ไม่จำกัดเพียงพื้นที่เพาะปลูก และพื้นที่เพาะปลูกที่ไม่ได้ใช้ประโยชน์ ทุ่งหญ้า สวนผลไม้ ไร่องุ่น การเลี้ยงปศุสัตว์ในพื้นที่จำกัด และพื้นที่ที่ปลูกเพื่อผลิตผลไม้ ถั่ว หรือเบอร์รี ถนนที่ใช้เพื่อการเกษตรเป็นหลัก (เช่น ไม่ได้ใช้ สำหรับการขนส่งสาธารณะจากเมืองหนึ่งไปยังอีกเมืองหนึ่ง) ถือเป็นการใช้ที่ดิน เพื่อการเกษตร |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Use_Raw_Probability_Developed |
เมตร | ความน่าจะเป็นของ LCMS ดิบที่โมเดลคาดการณ์ว่า "พัฒนาแล้ว" กำหนดเป็น: ที่ดินที่ปกคลุมด้วย โครงสร้างที่มนุษย์สร้างขึ้น (เช่น ที่อยู่อาศัยที่มีความหนาแน่นสูง เชิงพาณิชย์ อุตสาหกรรม เหมืองแร่ หรือการขนส่ง) หรือส่วนผสมของทั้งพืชพรรณ (รวมถึงต้นไม้) และโครงสร้าง (เช่น ที่อยู่อาศัยที่มีความหนาแน่นต่ำ สนามหญ้า สถานที่พักผ่อนหย่อนใจ สุสาน ทางเดินขนส่งและสาธารณูปโภค ฯลฯ) รวมถึงที่ดินใดๆ ที่มีการเปลี่ยนแปลงการใช้งานโดยกิจกรรมของมนุษย์ |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Use_Raw_Probability_Forest |
เมตร | ความน่าจะเป็นของป่าที่ได้จากการประมาณ LCMS ดิบ กำหนดเป็นที่ดินที่ ปลูกหรือมีพืชพรรณขึ้นตามธรรมชาติ และมี (หรือมีแนวโน้มที่จะมี) ต้นไม้ปกคลุมตั้งแต่ 10% ขึ้นไปในช่วงเวลาใดเวลาหนึ่งในลำดับการเปลี่ยนแปลง ที่เกิดขึ้นในระยะเวลาอันใกล้นี้ ซึ่งอาจรวมถึงป่าธรรมชาติ ป่าปลูก และพื้นที่ชุ่มน้ำที่มีไม้ยืนต้นประเภทผลัดใบ ไม่ผลัดใบ และ/หรือแบบผสม |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Use_Raw_Probability_Non-Forest-Wetland |
เมตร | ความน่าจะเป็นของพื้นที่ชุ่มน้ำที่ไม่ใช่ป่าไม้ที่จำลองโดย LCMS ดิบ กำหนดเป็น: พื้นที่ ที่อยู่ติดกับหรือภายในตารางน้ำที่มองเห็นได้ (อิ่มตัวอย่างถาวรหรือ ตามฤดูกาล) ซึ่งมีพุ่มไม้หรือพืชโผล่ที่คงอยู่เป็นส่วนใหญ่ พื้นที่ชุ่มน้ำเหล่านี้อาจตั้งอยู่บริเวณชายฝั่งของทะเลสาบ ช่องแม่น้ำ หรือปากแม่น้ำ บนที่ราบน้ำท่วมถึงของแม่น้ำ ในพื้นที่ลุ่มน้ำที่แยกตัว หรือบนเนินเขา นอกจากนี้ยังอาจพบเป็นแอ่งน้ำในทุ่งหญ้า คลองระบายน้ำ และบ่อน้ำสำหรับปศุสัตว์ในพื้นที่เกษตรกรรม รวมถึงอาจปรากฏเป็นเกาะกลางทะเลสาบหรือแม่น้ำด้วย ตัวอย่างอื่นๆ ได้แก่ หนอง บึง บึงโคลน บึงพรุ บึงน้ำตื้น บึงน้ำจืด และบึงน้ำเค็ม |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Use_Raw_Probability_Other |
เมตร | ความน่าจะเป็นของ "อื่นๆ" ที่ได้จากการประมาณ LCMS แบบดิบ กำหนดเป็น: พื้นที่ (ไม่ว่าจะมีการใช้งานหรือไม่ก็ตาม) ที่แนวโน้มสเปกตรัมหรือหลักฐานสนับสนุนอื่นๆ บ่งชี้ว่าเกิดเหตุการณ์การรบกวนหรือการเปลี่ยนแปลง แต่ไม่สามารถระบุสาเหตุที่แน่ชัดได้ หรือประเภทของการเปลี่ยนแปลงไม่ตรงตามหมวดหมู่กระบวนการเปลี่ยนแปลงที่กำหนดไว้ข้างต้น |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Land_Use_Raw_Probability_Rangeland-or-Pasture |
เมตร | ความน่าจะเป็นของ LCMS ดิบที่จำลองของทุ่งหญ้าหรือทุ่งเลี้ยงสัตว์ กำหนดเป็น: คลาสนี้รวมถึงพื้นที่ใดๆ ที่เป็นอย่างใดอย่างหนึ่งต่อไปนี้ ก.) ทุ่งหญ้าเลี้ยงสัตว์ ซึ่งมีพืชพรรณ เป็นส่วนผสมของหญ้า พุ่มไม้ พืชดอก และพืชคล้ายหญ้าพื้นเมือง ซึ่งส่วนใหญ่เกิดจากปัจจัยและกระบวนการทางธรรมชาติ เช่น ปริมาณน้ำฝน อุณหภูมิ ความสูง และไฟป่า แม้ว่าการจัดการอาจมีข้อจำกัด รวมถึงการเผาตามแผนที่กำหนด ตลอดจนการเล็มหญ้าของสัตว์กินพืชในบ้านและสัตว์ป่า หรือ ข.) ทุ่งหญ้า ซึ่งพืชพรรณอาจมีตั้งแต่หญ้าผสม หญ้าธรรมชาติส่วนใหญ่ พืชดอก และสมุนไพร ไปจนถึงพืชพรรณที่มีการจัดการมากกว่า ซึ่งมีหญ้าเป็นพืชเด่นที่ได้รับการเพาะเมล็ดและจัดการเพื่อ รักษาการปลูกพืชเชิงเดี่ยว |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
QA_Bits |
เมตร | ข้อมูลเสริมเกี่ยวกับแหล่งที่มาของค่าเอาต์พุตผลิตภัณฑ์ LCMS ประจำปี |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
เปลี่ยนตารางชั้นเรียน
| ค่า | สี | คำอธิบาย |
|---|---|---|
| 1 | #3d4551 | คงที่ |
| 2 | #f39268 | การสูญเสียอย่างช้าๆ |
| 3 | #d54309 | การสูญเสียอย่างรวดเร็ว |
| 4 | #00a398 | ค่าเกน |
| 5 | #1b1716 | มาสก์พื้นที่ที่ไม่ประมวลผล |
ตารางคลาส Land_Cover
| ค่า | สี | คำอธิบาย |
|---|---|---|
| 1 | #005e00 | เกสรจากต้นไม้ |
| 2 | #008000 | พุ่มไม้และต้นไม้สูง (SEAK เท่านั้น) |
| 3 | #00cc00 | มิกซ์เพลงเกี่ยวกับพุ่มไม้และต้นไม้ |
| 4 | #b3ff1a | ส่วนผสมของหญ้า/พืชล้มลุก/สมุนไพรและต้นไม้ |
| 5 | #99ff99 | มิกซ์เพลง Barren & Trees |
| 6 | #b30088 | พุ่มไม้สูง (SEAK เท่านั้น) |
| 7 | #e68a00 | พุ่มไม้ |
| 8 | #ffad33 | ส่วนผสมของหญ้า/พืชล้มลุก/สมุนไพรและพุ่มไม้ |
| 9 | #ffe0b3 | มิกซ์เพลง Barren & Shrubs |
| 10 | #ffff00 | หญ้า/พืชล้มลุก/สมุนไพร |
| 11 | #aa7700 | พื้นที่แห้งแล้งและพื้นที่ผสมหญ้า/พืชล้มลุก/สมุนไพร |
| 12 | #d3bf9b | แห้งแล้งหรือกันน้ำ |
| 13 | #ffffff | หิมะตกหรือถนนเป็นน้ำแข็ง |
| 14 | #4780f3 | น้ำ |
| 15 | #1b1716 | มาสก์พื้นที่ที่ไม่ประมวลผล |
ตารางคลาส Land_Use
| ค่า | สี | คำอธิบาย |
|---|---|---|
| 1 | #efff6b | เกษตรกรรม |
| 2 | #ff2ff8 | พัฒนาแล้ว |
| 3 | #1b9d0c | ป่า |
| 4 | #97ffff | พื้นที่ชุ่มน้ำที่ไม่ใช่ป่า |
| 5 | #a1a1a1 | อื่นๆ |
| 6 | #c2b34a | ทุ่งหญ้าหรือทุ่งเลี้ยงสัตว์ |
| 7 | #1b1716 | มาสก์พื้นที่ที่ไม่ประมวลผล |
พร็อพเพอร์ตี้รูปภาพ
พร็อพเพอร์ตี้รูปภาพ
| ชื่อ | ประเภท | คำอธิบาย |
|---|---|---|
| study_area | STRING | ปัจจุบัน LCMS ครอบคลุมพื้นที่สหรัฐอเมริกาที่อยู่ติดกัน ทางตะวันออกเฉียงใต้ของอลาสก้า และเปอร์โตริโก-หมู่เกาะเวอร์จินของสหรัฐอเมริกา เวอร์ชันนี้มีเอาต์พุตทั่ว สหรัฐอเมริกาแผ่นดินใหญ่และทางตะวันออกเฉียงใต้ของรัฐอะแลสกา ค่าที่เป็นไปได้: "CONUS, SEAK" |
ข้อกำหนดในการใช้งาน
ข้อกำหนดในการใช้งาน
กรมป่าไม้ของ USDA ไม่รับประกันทั้งโดยชัดแจ้งและโดยนัย ซึ่งรวมถึง การรับประกันความสามารถในการขายและความเหมาะสมสำหรับวัตถุประสงค์เฉพาะ และ ไม่รับผิดชอบทางกฎหมายหรือความรับผิดใดๆ ต่อความถูกต้อง ความน่าเชื่อถือ ความครบถ้วน หรือประโยชน์ของข้อมูลเชิงพื้นที่เหล่านี้ หรือต่อการใช้ข้อมูลเชิงพื้นที่เหล่านี้อย่างไม่เหมาะสมหรือ ไม่ถูกต้อง ข้อมูลเชิงพื้นที่และแผนที่หรือกราฟิกที่เกี่ยวข้องเหล่านี้ไม่ใช่เอกสารทางกฎหมายและไม่ได้มีวัตถุประสงค์เพื่อใช้เป็นเอกสารดังกล่าว ห้ามใช้ข้อมูลและแผนที่เพื่อกำหนดกรรมสิทธิ์ การเป็นเจ้าของ คำอธิบายทางกฎหมาย หรือขอบเขต เขตอำนาจศาล หรือข้อจำกัดที่อาจมีอยู่บนที่ดินสาธารณะหรือที่ดินส่วนบุคคล ข้อมูลและแผนที่อาจแสดงหรือ ไม่แสดงอันตรายจากธรรมชาติ และผู้ใช้ที่ดินควรใช้ความระมัดระวัง ตามสมควร ข้อมูลมีความผันผวนและอาจเปลี่ยนแปลงเมื่อเวลาผ่านไป ผู้ใช้มีหน้าที่ ตรวจสอบข้อจำกัดของข้อมูลเชิงพื้นที่และใช้ข้อมูล ตามนั้น
ข้อมูลเหล่านี้รวบรวมขึ้นโดยใช้เงินทุนจากรัฐบาลสหรัฐอเมริกา และสามารถ นำไปใช้ได้โดยไม่ต้องขอสิทธิ์หรือเสียค่าธรรมเนียมเพิ่มเติม หากคุณใช้ข้อมูลเหล่านี้ในสิ่งพิมพ์ การนำเสนอ หรือผลิตภัณฑ์การวิจัยอื่นๆ โปรดใช้การอ้างอิงต่อไปนี้
USDA Forest Service 2022. ระบบตรวจสอบการเปลี่ยนแปลงของภูมิทัศน์ USFS เวอร์ชัน 2021.7 (สหรัฐอเมริกาและอะแลสกาตะวันออกเฉียงใต้) ซอลต์เลกซิตี ยูทาห์
การอ้างอิง
USDA Forest Service 2022. ระบบตรวจสอบการเปลี่ยนแปลงของภูมิทัศน์ของ USFS v2021.7 (สหรัฐอเมริกาและอะแลสกาตะวันออกเฉียงใต้) ซอลต์เลกซิตี ยูทาห์
สำรวจด้วย Earth Engine
ตัวแก้ไขโค้ด (JavaScript)
var dataset = ee.ImageCollection('USFS/GTAC/LCMS/v2021-7'); var lcms = dataset.filterDate('2020', '2021') // range: [1985, 2021] .filter('study_area == "CONUS"') // or "SEAK" .first(); Map.addLayer(lcms.select('Land_Cover'), {}, 'Land Cover'); Map.addLayer(lcms.select('Land_Use'), {}, 'Land Use'); Map.addLayer(lcms.select('Change'), {}, 'Vegetation Change', false); Map.setCenter(-98.58, 38.14, 4);