USFS Landscape Change Monitoring System v2020.5 (Conterminous United States and Southeastern Alaska) [deprecated]

USFS/GTAC/LCMS/v2020-5
זמינות קבוצת הנתונים
1985-06-01T00:00:00Z–2020-09-30T00:00:00Z
יוצר מערך הנתונים
קטע קוד ל-Earth Engine
ee.ImageCollection("USFS/GTAC/LCMS/v2020-5")
תגים
שינוי
change-detection
יער
gtac
כיסוי השטח
נגזר מ-Landsat
שימוש בקרקע
landuse-landcover
lcms
redcastle-resources
rmrs
sentinel2-derived
פעולות על ציר הזמן
usda
usfs

תיאור

המוצר הזה הוא חלק מחבילת הנתונים של Landscape Change Monitoring System (מערכת למעקב אחר שינויים בנוף, LCMS). מוצגים שינויים לפי מודל LCMS, כיסוי קרקע ו/או סיווגים של שימוש בקרקע לכל שנה. גרסת ה-LCMS הזו מכסה את ארצות הברית הרציפה (CONUS) ואת דרום-מזרח אלסקה (SEAK).

מערכת LCMS היא מערכת שמבוססת על חישה מרחוק למיפוי ולמעקב אחר שינויים בנוף בארצות הברית. המטרה שלה היא לפתח גישה עקבית באמצעות הטכנולוגיה העדכנית ביותר וההתפתחויות בזיהוי שינויים, כדי ליצור מפה של שינויים בנוף ברמת הדיוק הכי גבוהה שאפשר.

הפלט כולל שלושה מוצרים שנתיים: שינוי, כיסוי קרקע ושימוש בקרקע. השינוי מתייחס באופן ספציפי לכיסוי צמחייה וכולל אובדן איטי, אובדן מהיר (שכולל גם שינויים הידרולוגיים כמו הצפה או ייבוש) ועלייה. הערכים האלה הם ערכים חזויים לכל שנה בסדרת הזמן של Landsat, והם משמשים כמוצרי הבסיס של LCMS. במפות של כיסוי הקרקע ושימוש הקרקע מוצג כיסוי הקרקע ברמת צורת החיים ושימוש הקרקע ברמה רחבה בכל שנה.

מכיוון שאין אלגוריתם שמשיג את התוצאות הכי טובות בכל המצבים, מערכת LCMS משתמשת באוסף של מודלים ככלי חיזוי, מה שמשפר את דיוק המפה במגוון של מערכות אקולוגיות ותהליכי שינוי (Healey et al., 2018). חבילת המפות שמתקבלת, שכוללת שינויים במערכות ניהול קרקע, כיסוי קרקע ושימוש בקרקע, מציגה תמונה הוליסטית של שינויים בנוף בארצות הברית במהלך ארבעת העשורים האחרונים.

שכבות החיזוי של מודל LCMS כוללות נתונים משולבים שנתיים של Landsat ו-Sentinel 2, פלטים של אלגוריתמים לזיהוי שינויים של LandTrendr ו-CCDC, ומידע על פני השטח. הגישה לכל הרכיבים האלה והעיבוד שלהם מתבצעים באמצעות Google Earth Engine (Gorelick et al., 2017).

כדי ליצור תמונות מורכבות שנתיות, נעשה שימוש ב-cFmask (Zhu and Woodcock 2012), ב-cloudScore וב-TDOM (Chastain et al., ‫2019) מוחלים על נתוני החזרת אור בחלק העליון של האטמוספרה ברמה 1C של Landsat Tier 1 ושל Sentinel 2a ו-2b. לאחר מכן, מחושב המדואיד השנתי כדי לסכם כל שנה לערך מורכב יחיד.

סדרת הזמן המורכבת מפולחת באופן זמני באמצעות LandTrendr (Kennedy et al., ‫2010; קנדי ואחרים, ‫2018; Cohen et al., 2018).

כל הערכים שבהם אין עננים וצללי עננים מפולחים גם הם באופן זמני באמצעות אלגוריתם CCDC (Zhu and Woodcock, ‏ 2014).

הערכים המורכבים הגולמיים, הערכים המותאמים של LandTrendr, ההבדלים בין זוגות, משך הפלח, גודל השינוי והשיפוע, ומקדמי הסינוס והקוסינוס של CCDC בספטמבר (3 ההרמוניות הראשונות), הערכים המותאמים וההבדלים בין זוגות, יחד עם הגובה, השיפוע, הסינוס של ההיבט, הקוסינוס של ההיבט ומדדי המיקום הטופוגרפי (Weiss,‏ 2001) מתוך National Elevation Dataset (NED), משמשים כמשתנים בלתי תלויים לחיזוי במודל Random Forest (Breiman,‏ 2001).

נתוני ההשוואה נאספים באמצעות TimeSync, כלי מבוסס-אינטרנט שעוזר לאנליסטים להציג את רשומת הנתונים של Landsat משנת 1984 ועד היום, ולפרש אותה (Cohen et al., 2010).

מקורות מידע נוספים

אפשר לפנות אל [sm.fs.lcms@usda.gov] בכל שאלה או בקשה ספציפית לנתונים.

  • Breiman, L., ‫2001. למידת מכונה. Springer, 45(3): 261-277 doi:10.1023/a:1017934522171

  • Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K., ‫2019. השוואה אמפירית בין חיישנים של Sentinel-2A ו-2B MSI,‏ Landsat-8 OLI ו-Landsat-7 ETM של מאפייני ספקטרום בחלק העליון של האטמוספירה מעל ארצות הברית הרציפה. בחישה מרחוק של הסביבה. Science Direct, 221: 274-285 doi:10.1016/j.rse.2018.11.012

  • Cohen, W. B., ‫Yang, Z., and Kennedy, R., ‫2010. זיהוי מגמות בהפרעות ביערות ובהתאוששות שלהם באמצעות סדרות זמן שנתיות של Landsat: 2. ‫TimeSync – כלים לכיול ולאימות. ב-Remote Sensing of Environment. Science Direct, 114(12): 2911-2924 doi:10.1016/j.rse.2010.07.010

  • Cohen, W. B., יאנג, ז. (Yang, Z.‎), Healey, S. P., קנדי, ר. E., and Gorelick, N., ‫2018. ‫LandTrendr multispectral ensemble לזיהוי הפרעות ביערות. בחישה מרחוק של הסביבה. ‫Science Direct, 205: 131-140 doi:10.1016/j.rse.2017.11.015

  • Healey, S. P., Cohen, W. B., יאנג, ז. (Yang, Z.‎), Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., ג'וזף יוז, מ. (Joseph Hughes, M.‎), קנדי, ר. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., יאנג, ל. (Yang, L.) וג'ו, ז. (Zhu, Z.) ‫2018. מיפוי שינויים ביערות באמצעות הכללה מוערמת: גישה משולבת. בחישה מרחוק של הסביבה. ‫Science Direct, 204: 717-728 doi:10.1016/j.rse.2017.09.029

  • Kennedy, R. E., Yang, Z., and Cohen, W. B., ‫2010. זיהוי מגמות בהפרעות ביערות ובהתאוששות שלהם באמצעות סדרות זמן שנתיות של Landsat: 1. LandTrendr – אלגוריתמים לפילוח זמני. ב-Remote Sensing of Environment. ‫Science Direct, 114(12): 2897-2910 doi:10.1016/j.rse.2010.07.008

  • Kennedy, R., יאנג, ז. (Yang, Z.‎), Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S., ‫2018. הטמעה של אלגוריתם LandTrendr ב-Google Earth Engine. בחישה מרחוק. MDPI, 10(5): 691 doi:10.3390/rs10050691

  • Weiss, A.D., ‫2001. ניתוח של מיקום טופוגרפי וצורות נוף. מצגת פוסטר, כנס משתמשי ESRI, סן דייגו, קליפורניה.

  • Zhu, Z., and Woodcock, C. ה. (2012). זיהוי עננים וצללי עננים בתמונות Landsat על בסיס אובייקטים. בחישה מרחוק של הסביבה. ‫Science Direct, 118: 83-94 doi:10.1016/j.rse.2011.10.028

  • Zhu, Z., and Woodcock, C. E., ‫2014. זיהוי שינויים רציף וסיווג של כיסוי הקרקע באמצעות כל הנתונים הזמינים של Landsat. ב-Remote Sensing of Environment. ‫Science Direct,‏ 144: 152-171 doi:10.1016/j.rse.2014.01.011

תחום תדרים

גודל הפיקסל
‫30 מטרים

תחום תדרים

שם גודל הפיקסל תיאור
Change מטרים

שינוי סופי במוצר LCMS לפי נושא. בכל שנה ממופים שלושה סוגים של שינויים (ירידה איטית, ירידה מהירה ועלייה). כל סיווג מחושב באמצעות מודל נפרד של יער אקראי, שמפיק הסתברות (פרופורציה של העצים בתוך מודל היער האקראי) לכך שהפיקסל שייך לסיווג הזה. לכן, לכל פיקסל יש שלוש תוצאות שונות של המודל לכל שנה. הכיתות הסופיות משויכות לכיתת השינוי עם ההסתברות הגבוהה ביותר שגם גבוהה מסף מסוים. לכל פיקסל שלא כולל ערך מעל הסף המתאים של כל סיווג, מוקצה הסיווג 'יציב'.

Land_Cover מטרים

מוצר סופי של כיסוי קרקע נושאי של LCMS. בכל שנה ממופים 14 סוגים של כיסוי קרקע באמצעות נתוני ייחוס של TimeSync ומידע ספקטרלי שנגזר מתמונות Landsat. כל סיווג נחזה באמצעות מודל נפרד של יער אקראי, שמפיק הסתברות (פרופורציה של העצים בתוך מודל היער האקראי) לכך שהפיקסל שייך לסיווג הזה. לכן, לכל פיקסל יש 14 פלטים שונים של מודלים לכל שנה, והסיווגים הסופיים מוקצים לכיסוי הקרקע עם ההסתברות הגבוהה ביותר. שבעה מתוך 14 סוגי כיסוי הקרקע מציינים כיסוי קרקע יחיד, שבו סוג כיסוי הקרקע הזה מכסה את רוב השטח של הפיקסל, ואף סוג אחר לא מכסה יותר מ-10% מהפיקסל. יש גם שבעה שיעורים מעורבים. הפיקסלים האלה מייצגים אזורים שבהם לפחות 10% מהפיקסל מכוסים על ידי סיווג נוסף של כיסוי הקרקע.

Land_Use מטרים

מוצר סופי של שימוש קרקע נושאי ב-LCMS. בסך הכול ממופים 6 סוגים של שימוש בקרקע על בסיס שנתי באמצעות נתוני ייחוס של TimeSync ומידע ספקטרלי שנגזר מתמונות Landsat. כל סיווג מנובא באמצעות מודל נפרד של Random Forest, שמפיק הסתברות (שיעור העצים במודל Random Forest) לכך שהפיקסל שייך לסיווג הזה. לכן, לכל פיקסל יש 6 פלטים שונים של המודל לכל שנה, והסיווגים הסופיים מוקצים לשימוש בקרקע עם ההסתברות הגבוהה ביותר.

Change_Raw_Probability_Slow_Loss מטרים

ההסתברות המחושבת של אובדן איטי, כפי שהיא מופיעה במודל LCMS. ההגדרה היא: אובדן איטי כולל את המחלקות הבאות מפרשנות תהליך השינוי של TimeSync –

  • ירידה מבנית – קרקע שבה עצים או צמחייה עשירה אחרת משתנים פיזית בגלל תנאי גידול לא נוחים שנובעים מגורמים לא אנתרופוגניים או לא מכניים. בדרך כלל, סוג כזה של אובדן יוצר מגמה באותות הספקטרליים (למשל, ירידה ב-NDVI, ירידה ברטיבות, עלייה ב-SWIR וכו'), אבל המגמה יכולה להיות קלה. ירידה מבנית מתרחשת בסביבות עם צמחייה מעוצה, לרוב כתוצאה מחרקים, מחלות, בצורת, גשם חומצי וכו'. ירידה מבנית יכולה לכלול אירועים של נשירת עלים שלא מובילים לתמותה, כמו במקרים של נגיעות בעש צועני ובזחל של עש האשוח, שמהם הצמחייה עשויה להשתקם תוך שנה או שנתיים.

  • ירידה ספקטרלית – תרשים שבו האות הספקטרלי מראה מגמה באחד או יותר מהפסי הספקטרליים או מהאינדקסים (למשל, ירידה ב-NDVI, ירידה ב-Wetness, עלייה ב-SWIR וכו'). דוגמאות למקרים כאלה: א) צמחייה לא יערנית ולא מעוצה שמראה מגמת ירידה (למשל, ירידה ב-NDVI, ירידה ברטיבות, עלייה ב-SWIR וכו'), או ב) צמחייה מעוצה שמראה מגמת ירידה שלא קשורה לאובדן של צמחייה מעוצה, למשל כשחופות של עצים בוגרים נסגרות וגורמות להצללה מוגברת, כששינוי בהרכב המינים עובר מעצים מחטניים לעצים רחבי עלים, או כשמזג אוויר יבש (בניגוד לבצורת חזקה יותר וחדה יותר) גורם לירידה ניכרת בחוזק הצמחייה, אבל לא לאובדן של חומר מעוצה או שטח עלים.

Change_Raw_Probability_Fast_Loss מטרים

ההסתברות המחושבת של אובדן מהיר על סמך נתוני LCMS גולמיים. ההגדרה: אובדן מהיר כולל את המחלקות הבאות מפרשנות תהליך השינוי של TimeSync –

  • שריפה – קרקע שעברה שינוי כתוצאה משריפה, ללא קשר לגורם ההצתה (טבעי או אנתרופוגני), לחומרה או לשימוש בקרקע.

  • קציר – קרקע יערנית שבה עצים, שיחים או צמחייה אחרת נחתכו או הוסרו באמצעים אנתרופוגניים. דוגמאות לכך הן כריתת עצים, כריתת עצים שנפגעו משריפה או מהתפשטות של חרקים, דילול עצים והנחיות אחרות לניהול יערות (למשל, כריתת עצים להגנה על עצים צעירים או כריתת עצים להפצת זרעים).

  • מכני – קרקע לא מיוערת שבה עצים, שיחים או צמחייה אחרת נחתכו או הוסרו באופן מכני באמצעות שרשור, גירוד, ניסור שיחים, דחפור או כל שיטה אחרת להסרת צמחייה שלא נמצאת ביער.

  • רוח/קרח – קרקע (ללא קשר לשימוש) שבה הצמחייה משתנה בגלל רוח מהוריקנים, טורנדו, סופות ואירועי מזג אוויר קשים אחרים, כולל גשם מקפיא מסופות קרח.

  • הידרולוגיה – קרקע שבה שיטפון שינה באופן משמעותי את כיסוי העצים או רכיבים אחרים של כיסוי הקרקע, ללא קשר לשימוש בקרקע (למשל, תערובות חדשות של חצץ וצמחייה בתוך אפיקי נחלים ובסביבתם אחרי שיטפון).

  • פסולת – קרקע (ללא קשר לשימוש) שעברה שינוי כתוצאה מתנועת חומרים טבעיים שקשורה למפולות, לשלגים, להרי געש, לזרמי פסולת וכו'.

  • אחר – קרקע (ללא קשר לשימוש) שבה המגמה הספקטרלית או ראיות תומכות אחרות מצביעות על כך שהתרחשו הפרעה או אירוע שינוי, אבל לא ניתן לקבוע את הסיבה הסופית או שהסוג של השינוי לא עומד באף אחת מהקטגוריות של תהליך השינוי שמוגדרות למעלה.

Change_Raw_Probability_Gain מטרים

ההסתברות הגולמית של עלייה שחושבה על ידי מודל LCMS. מוגדר כ: קרקע שבה חל גידול בכיסוי הצמחייה עקב צמיחה והתפתחות במשך שנה אחת או יותר. רלוונטי לכל האזורים שבהם יכול להיות שינוי ספקטרלי שקשור לצמיחה מחדש של צמחייה. באזורים מפותחים, הצמיחה יכולה להיות תוצאה של התבגרות הצמחייה או של מדשאות וגינון חדשים. ביערות, הגידול כולל צמיחת צמחייה מאדמה חשופה, וגם צמיחה של עצים בינוניים ועצים דומיננטיים מעל עצים אחרים ו/או צמיחה של דשא ושיחים נמוכים יותר. סביר להניח שפלחים של צמיחה או התאוששות שתועדו אחרי כריתת יערות יעברו בין סיווגים שונים של כיסוי קרקע כשהיער יתחדש. כדי שהשינויים האלה ייחשבו כצמיחה או כהתאוששות, הערכים הספקטרליים צריכים להיות קרובים לקו מגמה עולה (למשל, שיפוע חיובי שאם יורחב ל-20 שנה בערך, יהיה בסדר גודל של 0.10 יחידות של NDVI) שנמשך כמה שנים.

Land_Cover_Raw_Probability_Trees מטרים

ההסתברות המחושבת של עצים לפי מודל LCMS. ההגדרה: רוב הפיקסלים מורכבים מעצים חיים או מעצים מתים.

Land_Cover_Raw_Probability_Tall-Shrubs-and-Trees-Mix מטרים

ההסתברות המחושבת של LCMS לשיחים גבוהים ולתערובת עצים (דרום-מזרח אלסקה בלבד). הגדרה: רוב הפיקסל מורכב משיחים בגובה של יותר ממטר, וגם מורכב לפחות מ-10% עצים חיים או עצים מתים שעומדים.

Land_Cover_Raw_Probability_Shrubs-and-Trees-Mix מטרים

ההסתברות הגולמית של תערובת שיחים ועצים לפי מודל LCMS. הגדרה: רוב הפיקסל מורכב משיחים, וגם מ-10% לפחות של עצים חיים או עצים מתים עומדים.

Land_Cover_Raw_Probability_Grass-Forb-Herb-and-Trees-Mix מטרים

ההסתברות המחושבת הגולמית של תערובת של דשא, עשבים ועצים לפי מודל LCMS. הגדרה: רוב הפיקסלים מורכב מדשאים רב-שנתיים, מצמחי מרפא או מצורות אחרות של צמחייה עשבונית, וגם מורכב מ-10% לפחות של עצים חיים או עצים מתים שעומדים.

Land_Cover_Raw_Probability_Barren-and-Trees-Mix מטרים

ההסתברות הגולמית שחושבה על סמך מודל LCMS לכיסוי מלא של שטח חשוף ושל שילוב של עצים. הגדרה: רוב הפיקסל מורכב מקרקע חשופה שנחשפה כתוצאה מהפרעה (למשל, קרקע שנחשפה כתוצאה מפינוי מכני או כריתת יערות), וגם מאזורים שוממים באופן קבוע כמו מדבריות, מישורי מלח, סלעים חשופים (כולל מינרלים וחומרים גיאולוגיים אחרים שנחשפו כתוצאה מפעולות כרייה על פני השטח), דיונות חול, אגמי מלח וחופים. גם דרכים שעשויות מעפר ומחצץ נחשבות לקרקע לא פורייה, והן כוללות לפחות 10% עצים חיים או עצים מתים שעומדים.

Land_Cover_Raw_Probability_Tall-Shrubs מטרים

ההסתברות הגולמית של LCMS שנוצרה על ידי מודל לשיחים גבוהים (דרום-מזרח אסיה בלבד). הגדרה: רוב הפיקסל מורכב משיחים בגובה של יותר ממטר.

Land_Cover_Raw_Probability_Shrubs מטרים

ההסתברות הגולמית של שיחים שחושבה על ידי מודל LCMS. הגדרה: רוב הפיקסל מורכב משיחים.

Land_Cover_Raw_Probability_Grass-Forb-Herb-and-Shrubs-Mix מטרים

ההסתברות הגולמית לפי מודל LCMS לתערובת של עשבים, צמחים ושיחים. הגדרה: רוב הפיקסל מורכב מדשאים רב-שנתיים, מצמחי מרפא או מצורות אחרות של צמחייה עשבונית, וגם מורכב משיחים בשיעור של 10% לפחות.

Land_Cover_Raw_Probability_Barren-and-Shrubs-Mix מטרים

ההסתברות הגולמית של תערובת של שטחים חשופים ושיחים, שחושבה על ידי מודל LCMS. הגדרה: רוב הפיקסל מורכב מקרקע חשופה שנחשפה כתוצאה מהפרעה (למשל, קרקע שנחשפה כתוצאה מפינוי מכני או כריתת יערות), וגם מאזורים שוממים באופן קבוע כמו מדבריות, מישורי מלח, סלעים חשופים (כולל מינרלים וחומרים גיאולוגיים אחרים שנחשפו כתוצאה מפעולות כרייה על פני השטח), דיונות חול, אגמי מלח וחופים. כבישים שמורכבים מאדמה ומחצץ נחשבים גם הם לשטח חשוף, וכוללים לפחות 10% שיחים.

Land_Cover_Raw_Probability_Grass-Forb-Herb מטרים

ההסתברות הגולמית שחושבה על סמך מודל LCMS של דשא/עשב/צמח. ההגדרה: רוב הפיקסלים מורכבים מדשאים רב-שנתיים, מעשבים רחבי עלים או מצורות אחרות של צמחייה עשבונית.

Land_Cover_Raw_Probability_Barren-and-Grass-Forb-Herb-Mix מטרים

ההסתברות הגולמית שחושבה על ידי מודל LCMS לקרקע חשופה ולתערובת של עשבים, צמחים רחבי עלים ועשבי תיבול. הגדרה: רוב הפיקסל מורכב מאדמה חשופה שנחשפה כתוצאה מהפרעה (למשל, אדמה שנחשפה כתוצאה מפינוי מכני או כריתת יערות), וגם מאזורים שוממים באופן קבוע כמו מדבריות, מישורי מלח, סלעים חשופים (כולל מינרלים וחומרים גיאולוגיים אחרים שנחשפו כתוצאה מפעולות כרייה על פני השטח), דיונות, אגמי מלח וחופים. גם דרכים שמורכבות מאדמה ומחצץ נחשבות לשטח חשוף, והן כוללות לפחות 10% עשבים רב-שנתיים, צמחי מרפא או צורות אחרות של צמחייה עשבונית.

Land_Cover_Raw_Probability_Barren-or-Impervious מטרים

ההסתברות המחושבת של LCMS לקרקע חשופה או אטומה. הגדרה: רוב הפיקסל מורכב מ-1) קרקע חשופה שנחשפה כתוצאה מהפרעה (למשל, קרקע שנחשפה כתוצאה מפינוי מכני או כריתת יערות), וגם מאזורים שוממים באופן קבוע כמו מדבריות, מישורי מלח, סלעים חשופים (כולל מינרלים וחומרים גיאולוגיים אחרים שנחשפו כתוצאה מפעולות כרייה על פני השטח), דיונות חול, אגמי מלח וחופים. כמו כן, נחשבים כשטחים שאינם חדירים למים: 1) שטחים שאינם מכוסים בצמחייה, כמו דרכים עשויות עפר וחצץ, או 2) חומרים מלאכותיים שהמים לא יכולים לחדור דרכם, כמו כבישים סלולים, גגות וחניונים.

Land_Cover_Raw_Probability_Snow-or-Ice מטרים

ההסתברות הגולמית שחושבה על ידי מודל LCMS לשלג או לקרח. ההגדרה היא: רוב הפיקסלים מורכב משלג או מקרח.

Land_Cover_Raw_Probability_Water מטרים

ההסתברות המחושבת של מים לפי מודל LCMS. מוגדר כ: רוב הפיקסל מורכב ממים.

Land_Use_Raw_Probability_Agriculture מטרים

ההסתברות הגולמית של חקלאות שחושבה על ידי מודל LCMS. הגדרה: קרקע שמשמשת לייצור מזון, סיבים ודלקים, שנמצאת במצב של צמחייה או ללא צמחייה. ההגדרה הזו כוללת, בין היתר, שטחי גידול מעובדים ולא מעובדים, שטחי חציר, מטעים, כרמים, שטחים לגידול בעלי חיים ושטחים שבהם נשתלו עצים או שיחים להפקת פירות, אגוזים או פירות יער. כבישים שמשמשים בעיקר לשימוש חקלאי (כלומר, לא משמשים לתחבורה ציבורית מעיר לעיר) נחשבים לשימוש בקרקע חקלאית.

Land_Use_Raw_Probability_Developed מטרים

ההסתברות המחושבת של LCMS לסטטוס 'פותח'. הגדרה: קרקע שמכוסה במבנים מעשה ידי אדם (למשל: מגורים בצפיפות גבוהה, מסחר, תעשייה, כרייה או תחבורה), או תערובת של צמחייה (כולל עצים) ומבנים (למשל: מגורים בצפיפות נמוכה, מדשאות, מתקני פנאי, בתי קברות, מסדרונות תחבורה ושירותים וכו'), כולל כל קרקע שעברה שינוי פונקציונלי כתוצאה מפעילות אנושית.

Land_Use_Raw_Probability_Forest מטרים

ההסתברות המחושבת של יער לפי מודל LCMS. הגדרה: קרקע ששתולים בה צמחים או שיש בה צמחייה טבעית, ושכוללת (או סביר להניח שתכלול) כיסוי עצים של 10% או יותר בשלב כלשהו במהלך רצף סוקצסיוני בטווח הקצר. יכול להיות שהסיווגים האלה יכללו יערות טבעיים נשירים, ירוקי עד או מעורבים, מטעי יער וביצות עם צמחייה מעוצה.

Land_Use_Raw_Probability_Non-Forest-Wetland מטרים

ההסתברות הגולמית לפי מודל LCMS לביצות שאינן יערות. מוגדר כ: קרקעות סמוכות או בתוך מי תהום גלויים (רוויים באופן קבוע או עונתי) שבהם יש בעיקר שיחים או צמחים שצומחים מעל פני המים. שטחי ביצות יכולים להיות ממוקמים בקרבת חופים של אגמים, ערוצי נהרות או שפכי נהרות, במישורי הצפה של נהרות, באזורי ניקוז מבודדים או במדרונות. הם יכולים להופיע גם כבורות בערבות, כתעלות ניקוז וכבריכות לבעלי חיים בנופים חקלאיים, וגם כאיים באמצע אגמים או נהרות. דוגמאות נוספות כוללות גם ביצות, אדמות כבול, ביצות מלוחות, ביצות טובעניות, ביצות צפוניות, ביצות עונתיות, ביצות אלקליניות וביצות עם נהרות קצרים.

Land_Use_Raw_Probability_Other מטרים

ההסתברות הגולמית של LCMS שמוצגת כ'אחר'. מוגדר כ: קרקע (ללא קשר לשימוש) שבה המגמה הספקטרלית או ראיות תומכות אחרות מצביעות על כך שהתרחשו הפרעה או אירוע שינוי, אבל לא ניתן לקבוע את הסיבה הסופית או שסוג השינוי לא עומד באף אחת מקטגוריות תהליך השינוי שהוגדרו למעלה.

Land_Use_Raw_Probability_Rangeland-or-Pasture מטרים

ההסתברות הגולמית שחושבה על ידי מודל LCMS לגבי שטחי מרעה או אדמות מרעה. הגדרה: הקטגוריה הזו כוללת כל אזור שמתקיים בו אחד מהתנאים הבאים: א) שטחי מרעה, שבהם הצמחייה היא תערובת של עשבים מקומיים, שיחים, עשבים רחבי עלים וצמחים דמויי עשב, שצומחים בעיקר כתוצאה מגורמים ותהליכים טבעיים כמו גשם, טמפרטורה, גובה ושריפה, למרות שניהול מוגבל עשוי לכלול גם שריפה מבוקרת וגם רעייה של בעלי חיים מקומיים ופראיים או ב.) שטח מרעה, שבו הצמחייה יכולה להיות מגוונת, בעיקר עשבים טבעיים, צמחי מרפא וצמחים רחבי עלים, או צמחייה מנוהלת יותר שבה יש בעיקר מיני עשבים שנזרעו וטופלו כדי לשמור על מצב של מונוקולטורה.

טבלת שינוי סיווג

ערך צבע תיאור
1 #3d4551

אורווה

2 #f39268

ירידה איטית

3 ‎#d54309

הפסד מהיר

4 #00a398

הגברה

5 #1b1716

מסכה של אזור שלא עובר עיבוד

טבלת סיווג Land_Cover

ערך צבע תיאור
1 #005e00

עצים

2 #008000

Tall Shrubs & Trees Mix (SEAK Only)

3 #00cc00

מיקס של שיחים ועצים

4 #b3ff1a

תערובת של דשא, צמחים ועצים

5 #99ff99

מיקס של שטח חשוף ועצים

6 #b30088

שיחים גבוהים (רק בדרום-מזרח אסיה)

7 #e68a00

שיחים

8 #ffad33

תערובת של דשא, עשבים ושיחים

9 #ffe0b3

Barren & Shrubs Mix

10 #ffff00

עשב/צמח עשבוני/תבלין

11 #aa7700

תערובת של עשבים, צמחים ועשבי תיבול

12 #d3bf9b

שומם או אטום

13 #ffffff

שלג או קרח

14 #4780f3

מים

15 #1b1716

מסכה של אזור שלא עובר עיבוד

טבלת סיווג Land_Use

ערך צבע תיאור
1 #efff6b

חקלאות

2 #ff2ff8

פותח

3 #1b9d0c

יער

4 #97ffff

אדמה בוצית (ביצה) ללא יער

5 #a1a1a1

אחר

6 #c2b34a

שטחי מרעה

7 #1b1716

מסכה של אזור שלא עובר עיבוד

מאפייני תמונה

מאפייני תמונה

שם סוג תיאור
study_area מחרוזת

נכון לעכשיו, מערכת LCMS מכסה את ארה"ב הרציפה ואת דרום-מזרח אלסקה. בעתיד הקרוב נרחיב את האפשרות הזו לכל המדינות והטריטוריות בארה"ב.

ערכים אפשריים: SEAK או CONUS

תנאים והגבלות

תנאים והגבלות

שירות היערות של USDA לא נותן אחריות, מפורשת או משתמעת, כולל אחריות לסחירות ולהתאמה למטרה מסוימת, ולא נושא באחריות משפטית או באחריות לדיוק, למהימנות, לשלמות או לשימושיות של הנתונים הגיאוספציאליים האלה, או לשימוש לא תקין או שגוי בנתונים הגיאוספציאליים האלה. הנתונים הגיאוספציאליים והמפות או הגרפיקות הקשורות לא מהווים מסמכים משפטיים, והם לא מיועדים לשימוש ככאלה. אסור להשתמש בנתונים ובמפות כדי לקבוע בעלות, תיאורים משפטיים או גבולות, סמכות שיפוט או הגבלות שעשויות לחול על קרקע ציבורית או פרטית. יכול להיות שסכנות טבעיות יופיעו בנתונים ובמפות, ויכול להיות שלא. לכן, משתמשים בקרקע צריכים לנקוט משנה זהירות. הנתונים הם דינמיים ועשויים להשתנות עם הזמן. המשתמש אחראי לאמת את המגבלות של הנתונים הגיאו-מרחביים ולהשתמש בנתונים בהתאם.

הנתונים האלה נאספו באמצעות מימון מממשלת ארה"ב, ואפשר להשתמש בהם ללא הרשאות או עמלות נוספות. אם אתם משתמשים בנתונים האלה בפרסום, במצגת או במוצר מחקר אחר, עליכם לציין את הציטוט הבא:

שירות היערות של משרד החקלאות האמריקאי (USDA). 2021. USFS Landscape Change Monitoring System version 2020.5. סולט לייק סיטי, יוטה.

ציטוטים ביבליוגרפיים

ציטוטים ביבליוגרפיים:
  • שירות היערות של משרד החקלאות האמריקאי (USDA). 2021. USFS Landscape Change Monitoring System version 2020.5. סולט לייק סיטי, יוטה.

סיור עם פלטפורמת Earth Engine

Code Editor (JavaScript)

var dataset = ee.ImageCollection('USFS/GTAC/LCMS/v2020-5');

var lcms = dataset.filterDate('2020', '2021')  // range: [1985, 2020]
               .filter('study_area == "CONUS"')  // or "SEAK"
               .first();

Map.addLayer(lcms.select('Land_Cover'), {}, 'Land Cover');
Map.addLayer(lcms.select('Land_Use'), {}, 'Land Use');
Map.addLayer(lcms.select('Change'), {}, 'Vegetation Change', false);

Map.setCenter(-98.58, 38.14, 4);
פתיחה ב-Code Editor