
- זמינות קבוצת הנתונים
- 1985-06-01T00:00:00Z–2020-09-30T00:00:00Z
- ספק קבוצת הנתונים
- USDA Forest Service (USFS) Geospatial Technology and Applications Center (GTAC)
- תגים
תיאור
המוצר הזה הוא חלק מחבילת הנתונים של מערכת המעקב אחר שינויים בנוף (LCMS). מוצגים שינויים לפי מודל LCMS, כיסוי קרקע ו/או סיווגים של שימוש בקרקע לכל שנה. גרסת ה-LCMS הזו מכסה את ארצות הברית הרציפה (CONUS) ואת דרום-מזרח אלסקה (SEAK).
מערכת LCMS היא מערכת שמבוססת על חישה מרחוק למיפוי ולמעקב אחר שינויים בנוף בארצות הברית. המטרה של הפרויקט היא לפתח גישה עקבית באמצעות הטכנולוגיה העדכנית ביותר והתפתחויות בזיהוי שינויים, כדי ליצור מפה של שינויים בנוף ברמת הדיוק הגבוהה ביותר שאפשר.
הפלט כולל שלושה מוצרים שנתיים: שינוי, כיסוי קרקע ושימוש בקרקע. השינוי מתייחס באופן ספציפי לכיסוי צמחייה וכולל אובדן איטי, אובדן מהיר (שכולל גם שינויים הידרולוגיים כמו הצפה או ייבוש) ועלייה. הערכים האלה הם ערכים חזויים לכל שנה בסדרת הזמן של Landsat, והם משמשים כבסיס למוצרי LCMS. במפות של כיסוי הקרקע והשימוש בקרקע מוצגים כיסוי הקרקע ברמת צורת החיים והשימוש בקרקע ברמה רחבה לכל שנה.
מכיוון שאין אלגוריתם שמשיג את התוצאות הכי טובות בכל המצבים, מערכת LCMS משתמשת באוסף של מודלים ככלי חיזוי, מה שמשפר את דיוק המפה במגוון של מערכות אקולוגיות ותהליכי שינוי (Healey et al., 2018). חבילת המפות שמתקבלת, שכוללת שינויים ב-LCMS, כיסוי קרקע ושימוש בקרקע, מציגה תמונה הוליסטית של שינויים בנוף בארצות הברית במהלך ארבעת העשורים האחרונים.
שכבות החיזוי של מודל LCMS כוללות נתונים שנתיים משולבים של Landsat ו-Sentinel 2, פלט מאלגוריתמים לזיהוי שינויים של LandTrendr ו-CCDC ומידע על השטח. הגישה לכל הרכיבים האלה והעיבוד שלהם מתבצעים באמצעות Google Earth Engine (Gorelick et al., 2017).
כדי ליצור תמונות מורכבות שנתיות, נעשה שימוש ב-cFmask (Zhu and Woodcock 2012), ב-cloudScore וב-TDOM (Chastain et al., 2019) מוחלים על נתוני ההשתקפות בחלק העליון של האטמוספרה ברמה 1C של Landsat Tier 1 ושל Sentinel 2a ו-2b. לאחר מכן מחושב המדואיד השנתי כדי לסכם כל שנה לערך מורכב יחיד.
סדרת הזמנים המורכבת מפולחת בזמן באמצעות LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018).
כל הערכים שלא כוללים עננים וצללי עננים מפולחים גם הם באופן זמני באמצעות אלגוריתם CCDC (Zhu and Woodcock, 2014).
הערכים המורכבים הגולמיים, הערכים המותאמים של LandTrendr, ההבדלים בין זוגות, משך הפלח, גודל השינוי והשיפוע, ומקדמי הסינוס והקוסינוס של CCDC בספטמבר (3 ההרמוניות הראשונות), הערכים המותאמים וההבדלים בין זוגות, יחד עם הגובה, השיפוע, סינוס הזווית, קוסינוס הזווית ומדדי המיקום הטופוגרפי (Weiss, 2001) מתוך National Elevation Dataset (NED), משמשים כמשתנים בלתי תלויים לחיזוי במודל Random Forest (Breiman, 2001).
נתוני הייחוס נאספים באמצעות TimeSync, כלי מבוסס-אינטרנט שעוזר לאנליסטים להציג ולפרש את רשומת הנתונים של Landsat משנת 1984 ועד היום (Cohen et al., 2010).
מקורות מידע נוספים
הכלי לניתוח נתונים של LCMS הוא אפליקציה מבוססת-אינטרנט שמאפשרת למשתמשים להציג, לנתח, לסכם ולהוריד נתונים של LCMS.
מידע מפורט יותר על השיטות והערכת הדיוק זמין בסקירה של שיטות LCMS. אפשר גם להוריד נתונים, מטא-נתונים ומסמכי תמיכה ממאגר המידע הגיאוגרפי של LCMS.
אפשר לפנות אל [sm.fs.lcms@usda.gov] בכל שאלה או בקשה ספציפית לנתונים.
Breiman, L., 2001. למידת מכונה. Springer, 45(3): 261-277 doi:10.1023/a:1017934522171
Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K., 2019. השוואה אמפירית בין חיישנים של Sentinel-2A ו-2B MSI, Landsat-8 OLI ו-Landsat-7 ETM, מאפיינים ספקטרליים של החלק העליון של האטמוספירה מעל ארצות הברית הרציפה. בחישה מרחוק של הסביבה. Science Direct, 221: 274-285 doi:10.1016/j.rse.2018.11.012
Cohen, W. B., Yang, Z., and Kennedy, R., 2010. זיהוי מגמות בהפרעות ביערות ובהתאוששות שלהם באמצעות סדרות זמן שנתיות של Landsat: 2. TimeSync – כלים לכיול ולאימות. ב-Remote Sensing of Environment. Science Direct, 114(12): 2911-2924 doi:10.1016/j.rse.2010.07.010
Cohen, W. B., יאנג, ז. (Yang, Z.), Healey, S. P., קנדי, ר. E., and Gorelick, N., 2018. אנסמבל רב-ספקטרלי של LandTrendr לזיהוי הפרעות ביערות. ב-Remote Sensing of Environment. Science Direct, 205: 131-140 doi:10.1016/j.rse.2017.11.015
Healey, S. P., Cohen, W. B., יאנג, ז. (Yang, Z.), Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., ג'וזף יוז, מ', קנדי, ר. E., לאבלנד, טקסס R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., יאנג, ל. (Yang, L.) וג'ו, ז. (Zhu, Z.), 2018. מיפוי שינויים ביערות באמצעות הכללה מוערמת: גישה משולבת. ב-Remote Sensing of Environment. Science Direct, 204: 717-728 doi:10.1016/j.rse.2017.09.029
Kennedy, R. E., Yang, Z., and Cohen, W. B., 2010. זיהוי מגמות בהפרעות ביערות ובהתאוששות שלהם באמצעות סדרות זמן שנתיות של Landsat: 1. LandTrendr – אלגוריתמים לפילוח זמני. ב-Remote Sensing of Environment. Science Direct, 114(12): 2897-2910 doi:10.1016/j.rse.2010.07.008
Kennedy, R., יאנג, ז. (Yang, Z.), Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S., 2018. הטמעה של אלגוריתם LandTrendr ב-Google Earth Engine. בחישה מרחוק. MDPI, 10(5): 691 doi:10.3390/rs10050691
Weiss, A.D., 2001. ניתוח של מיקום טופוגרפי וצורות נוף, מצגת פוסטר, כנס משתמשי ESRI, סן דייגו, קליפורניהZhu, Z., and Woodcock, C. ה. (2012). זיהוי עננים וצללי עננים בתמונות Landsat על בסיס אובייקטים. ב-Remote Sensing of Environment. Science Direct, 118: 83-94 doi:10.1016/j.rse.2011.10.028
Zhu, Z., and Woodcock, C. E., 2014. זיהוי רציף של שינויים וסיווג של כיסוי הקרקע באמצעות כל הנתונים הזמינים של Landsat. ב-Remote Sensing of Environment. Science Direct, 144: 152-171 doi:10.1016/j.rse.2014.01.011
תחום תדרים
גודל הפיקסל
30 מטרים
תחום תדרים
שם | גודל הפיקסל | תיאור |
---|---|---|
Change |
מטרים | שינוי סופי במוצר LCMS לפי נושא. בכל שנה ממופים שלושה סוגים של שינויים (ירידה איטית, ירידה מהירה ועלייה). כל מחלקה נחזית באמצעות מודל נפרד של Random Forest, שמפיק הסתברות (פרופורציה של העצים בתוך מודל Random Forest) לכך שהפיקסל שייך למחלקה הזו. לכן, לכל פיקסל יש שלוש תוצאות שונות של המודל לכל שנה. הכיתות הסופיות מוקצות לכיתת השינוי עם ההסתברות הגבוהה ביותר שגם גבוהה מסף שצוין. כל פיקסל שלא כולל ערך מעל הסף המתאים של כל מחלקה מוקצה למחלקה Stable. |
Land_Cover |
מטרים | מוצר סופי של כיסוי הקרקע של LCMS לפי נושא. בכל שנה ממופים 14 סוגים של כיסוי קרקע באמצעות נתוני ייחוס של TimeSync ומידע ספקטרלי שנגזר מתמונות Landsat. כל מחלקה נחזית באמצעות מודל נפרד של יער אקראי, שמפיק הסתברות (פרופורציה של העצים במודל היער האקראי) לכך שהפיקסל שייך למחלקה הזו. לכן, לכל פיקסל יש 14 פלטים שונים של מודלים לכל שנה, והסיווגים הסופיים מוקצים לכיסוי הקרקע עם ההסתברות הגבוהה ביותר. שבעה מתוך 14 סוגי כיסוי הקרקע מציינים כיסוי קרקע יחיד, שבו סוג כיסוי הקרקע מכסה את רוב השטח של הפיקסל, ואף סוג אחר לא מכסה יותר מ-10% מהפיקסל. יש גם שבעה שיעורים מעורבים. הפיקסלים האלה מייצגים אזורים שבהם סוג כיסוי קרקע נוסף מכסה לפחות 10% מהפיקסל. |
Land_Use |
מטרים | מוצר סופי של שימוש בקרקע ב-LCMS לפי נושא. בכל שנה ממופים 6 סוגים של שימוש בקרקע באמצעות נתוני ייחוס של TimeSync ומידע ספקטרלי שמופק מתמונות Landsat. כל מחלקה נחזית באמצעות מודל נפרד של יער אקראי, שמפיק הסתברות (פרופורציה של העצים במודל היער האקראי) לכך שהפיקסל שייך למחלקה הזו. לכן, לכל פיקסל יש 6 פלטים שונים של מודלים לכל שנה, והסיווגים הסופיים מוקצים לשימוש בקרקע עם ההסתברות הכי גבוהה. |
Change_Raw_Probability_Slow_Loss |
מטרים | ההסתברות הגולמית של LCMS שחושבה לאובדן איטי. ההגדרה היא: אובדן איטי כולל את המחלקות הבאות מפרשנות תהליך השינוי של TimeSync –
|
Change_Raw_Probability_Fast_Loss |
מטרים | ההסתברות המחושבת של אובדן מהיר, כפי שמודל LCMS חוזה. הגדרה: אובדן מהיר כולל את המחלקות הבאות מפרשנות תהליך השינוי של TimeSync –
|
Change_Raw_Probability_Gain |
מטרים | ההסתברות הגולמית של LCMS לרווח, כפי שהיא מחושבת על ידי המודל. הגדרה: קרקע שבה חל גידול בצמחייה בעקבות צמיחה והתפתחות במשך שנה אחת או יותר. רלוונטי לכל האזורים שבהם עשויים להיות שינויים ספקטרליים שקשורים לצמיחה מחדש של צמחייה. באזורים מפותחים, הצמיחה יכולה להיות תוצאה של צמחייה בוגרת או של מדשאות וגינון חדשים. ביערות, גידול כולל צמיחת צמחייה מאדמה חשופה, וגם צמיחה מעל עצים בינוניים ועצים דומיננטיים משותפים ו/או דשא ושיחים נמוכים יותר. סביר להניח שפלחים של צמיחה או התאוששות שתועדו אחרי כריתת יערות יעברו בין סוגים שונים של כיסוי קרקע כשהיער יתחדש. כדי שהשינויים האלה ייחשבו כצמיחה או כהתאוששות, הערכים הספקטרליים צריכים להיות קרובים לקו מגמה עולה (לדוגמה, שיפוע חיובי שאם יוארך ל-20 שנה בערך, יהיה בסדר גודל של 0.10 יחידות של NDVI) שנמשך כמה שנים. |
Land_Cover_Raw_Probability_Trees |
מטרים | ההסתברות המחושבת של עצים לפי מודל LCMS גולמי. ההגדרה: רוב הפיקסלים מורכבים מעצים חיים או מעצים מתים שעומדים. |
Land_Cover_Raw_Probability_Tall-Shrubs-and-Trees-Mix |
מטרים | ההסתברות הגולמית שחושבה על ידי מודל LCMS לגבי Tall Shrubs and Trees Mix (דרום-מזרח אסיה בלבד). ההגדרה: רוב הפיקסל מורכב משיחים בגובה של יותר ממטר, וגם מורכב מ-10% לפחות של עצים חיים או עצים מתים שעומדים. |
Land_Cover_Raw_Probability_Shrubs-and-Trees-Mix |
מטרים | הסתברות משוערת גולמית של תערובת שיחים ועצים לפי LCMS. הגדרה: רוב הפיקסל מורכב משיחים, וגם מ-10% לפחות של עצים חיים או עצים מתים שעומדים. |
Land_Cover_Raw_Probability_Grass-Forb-Herb-and-Trees-Mix |
מטרים | הסתברות משוערת גולמית של תערובת דשא/צמחים עשבוניים/עשבים ועצים לפי מודל LCMS. הגדרה: רוב הפיקסל מורכב מדשאים רב-שנתיים, מצמחי מרפא או מצורות אחרות של צמחייה עשבונית, וגם מורכב מ-10% לפחות של עצים חיים או עצים מתים שעומדים. |
Land_Cover_Raw_Probability_Barren-and-Trees-Mix |
מטרים | ההסתברות הגולמית של תערובת של קרקע חשופה ועצים, שחושבה על סמך מודל LCMS. הגדרה: רוב הפיקסל מורכב מקרקע חשופה שנחשפה כתוצאה מהפרעה (למשל, קרקע שנחשפה כתוצאה מפינוי מכני או כריתת יערות), וגם מאזורים שוממים באופן קבוע כמו מדבריות, מישורי מלח, סלעים חשופים (כולל מינרלים וחומרים גיאולוגיים אחרים שנחשפו כתוצאה מפעולות כרייה על פני השטח), דיונות חול, אגמי מלח וחופים. גם דרכים שעשויות מעפר ומחצץ נחשבות לקרקע לא פורייה, והן כוללות לפחות 10% עצים חיים או עצים מתים. |
Land_Cover_Raw_Probability_Tall-Shrubs |
מטרים | ההסתברות הגולמית של LCMS שמוצגת במודל של שיחים גבוהים (דרום-מזרח אסיה בלבד). הגדרה: רוב הפיקסל מורכב משיחים בגובה של יותר ממטר. |
Land_Cover_Raw_Probability_Shrubs |
מטרים | ההסתברות הגולמית של שיחים שחושבה על ידי מודל LCMS. הגדרה: רוב הפיקסל מורכב משיחים. |
Land_Cover_Raw_Probability_Grass-Forb-Herb-and-Shrubs-Mix |
מטרים | הסבירות המחושבת לפי מודל LCMS של תערובת עשבים, צמחים ושיחים. הגדרה: רוב הפיקסל מורכב מדשאים רב-שנתיים, מצמחי מרפא או מצורות אחרות של צמחייה עשבונית, וגם מורכב משיחים בשיעור של 10% לפחות. |
Land_Cover_Raw_Probability_Barren-and-Shrubs-Mix |
מטרים | ההסתברות הגולמית של LCMS שנוצרה על סמך מודל של Barren and Shrubs Mix. הגדרה: רוב הפיקסל מורכב מקרקע חשופה שנחשפה כתוצאה מהפרעה (למשל, קרקע שנחשפה כתוצאה מפינוי מכני או כריתת יערות), וגם מאזורים שוממים באופן קבוע כמו מדבריות, מישורי מלח, סלעים חשופים (כולל מינרלים וחומרים גיאולוגיים אחרים שנחשפו כתוצאה מפעולות כרייה על פני השטח), דיונות חול, אגמי מלח וחופים. כבישים שעשויים מעפר ומחצץ נחשבים גם הם לשטח חשוף, וכוללים לפחות 10% שיחים. |
Land_Cover_Raw_Probability_Grass-Forb-Herb |
מטרים | ההסתברות הגולמית של LCMS שמוצגת כמודל של דשא/עשב/צמח. הגדרה: רוב הפיקסלים מורכבים מדשאים רב-שנתיים, מצמחי מרפא או מצורות אחרות של צמחייה עשבונית. |
Land_Cover_Raw_Probability_Barren-and-Grass-Forb-Herb-Mix |
מטרים | הסתברות גולמית שעברה מודלים של LCMS של Barren ו-Grass/Forb/Herb Mix. הגדרה: רוב הפיקסל מורכב מאדמה חשופה שנחשפה כתוצאה מהפרעה (למשל, אדמה שנחשפה כתוצאה מפינוי מכני או כריתת יערות), וגם מאזורים שוממים באופן קבוע כמו מדבריות, מישורי מלח, סלעים חשופים (כולל מינרלים וחומרים גיאולוגיים אחרים שנחשפו כתוצאה מפעולות כרייה על פני השטח), דיונות חול, אגמי מלח וחופים. גם דרכים שעשויות מעפר ומחצץ נחשבות לשטח חשוף, והן כוללות לפחות 10% עשבים רב-שנתיים, צמחי מרפא או צורות אחרות של צמחייה עשבונית. |
Land_Cover_Raw_Probability_Barren-or-Impervious |
מטרים | הסבירות הגולמית של LCMS למצב Barren או Impervious. הגדרה: רוב הפיקסל מורכב מ-1) קרקע חשופה שנחשפה כתוצאה מהפרעה (למשל, קרקע שנחשפה כתוצאה מפינוי מכני או כריתת יערות), וגם מאזורים שוממים באופן קבוע כמו מדבריות, מישורי מלח, סלעים חשופים (כולל מינרלים וחומרים גיאולוגיים אחרים שנחשפו כתוצאה מפעולות כרייה על פני השטח), דיונות חול, אגמי מלח וחופים. כמו כן, נכללים בכך כבישים שעשויים מעפר ומחצץ, או 2) חומרים מלאכותיים שמים לא יכולים לחדור דרכם, כמו כבישים סלולים, גגות וחניונים. |
Land_Cover_Raw_Probability_Snow-or-Ice |
מטרים | הסבירות הגולמית שמוצגת במודל LCMS לשלג או לקרח. ההגדרה: רוב הפיקסלים מורכב משלג או מקרח. |
Land_Cover_Raw_Probability_Water |
מטרים | ההסתברות הגולמית של מים שחושבה על ידי מודל LCMS. הגדרה: רוב הפיקסל מורכב ממים. |
Land_Use_Raw_Probability_Agriculture |
מטרים | ההסתברות הגולמית של LCMS (סיווג כיסוי קרקע) שמוצגת במודל של חקלאות. הגדרה: קרקע שמשמשת לייצור מזון, סיבים ודלקים, שנמצאת במצב צמחייה או במצב ללא צמחייה. ההגדרה הזו כוללת, בין היתר, שטחי גידול מעובדים ולא מעובדים, שטחי חציר, מטעים, כרמים, שטחים לגידול בעלי חיים ושטחים שבהם נשתלו עצים או שיחים להפקת פירות, אגוזים או פירות יער. כבישים שמשמשים בעיקר לשימוש חקלאי (כלומר, לא משמשים לתחבורה ציבורית מעיר לעיר) נחשבים לשימוש בקרקע חקלאית. |
Land_Use_Raw_Probability_Developed |
מטרים | ההסתברות הגולמית של LCMS (מערכת לניהול תוכן למידה) שפותחה. הגדרה: קרקע שמכוסה במבנים מעשה ידי אדם (למשל: מגורים בצפיפות גבוהה, מסחר, תעשייה, כרייה או תחבורה), או תערובת של צמחייה (כולל עצים) ומבנים (למשל: מגורים בצפיפות נמוכה, מדשאות, מתקני פנאי, בתי קברות, מסדרונות תחבורה ושירותים וכו'), כולל כל קרקע שעברה שינוי פונקציונלי כתוצאה מפעילות אנושית. |
Land_Use_Raw_Probability_Forest |
מטרים | ההסתברות הגולמית של יער שחושבה על ידי מודל LCMS. מוגדר כ: קרקע ששתולים בה צמחים או שיש בה צמחייה טבעית, ושכוללת (או סביר להניח שתכלול) כיסוי עצים של 10% או יותר בשלב כלשהו במהלך רצף סוקצסיוני בטווח הקצר. יכול להיות שהסיווגים האלה יכללו יערות טבעיים נשירים, ירוקי עד או מעורבים, מטעי יער וביצות מיוערות. |
Land_Use_Raw_Probability_Non-Forest-Wetland |
מטרים | ההסתברות לפי מודל LCMS של ביצות שאינן יערות. מוגדר כ: קרקעות סמוכות או בתוך מי תהום גלויים (רוויים באופן קבוע או עונתי) שבהם יש בעיקר שיחים או צמחים שצומחים מתוך המים. שטחי ביצות יכולים להיות ממוקמים בקרבת חופים של אגמים, ערוצי נהרות או שפכי נהרות, במישורי הצפה של נהרות, באזורי ניקוז מבודדים או במדרונות. הם יכולים להופיע גם כבריכות עונתיות בערבות, כתעלות ניקוז וכבריכות להשקיית בקר בנופים חקלאיים, וגם כאיים באמצע אגמים או נהרות. דוגמאות נוספות כוללות גם ביצות, אדמות כבול, ביצות מלוחות, ביצות טובעניות, ביצות טחב, ביצות עשבוניות, ביצות עם צמחייה נמוכה וביצות עם נחלים. |
Land_Use_Raw_Probability_Other |
מטרים | הסתברות גולמית של LCMS שעברה מודלים של 'אחר'. מוגדר כ: קרקע (ללא קשר לשימוש) שבה המגמה הספקטרלית או ראיות תומכות אחרות מצביעות על כך שהתרחשו הפרעה או אירוע שינוי, אבל לא ניתן לקבוע את הסיבה הסופית או שסוג השינוי לא עומד באף אחת מקטגוריות תהליך השינוי שמוגדרות למעלה. |
Land_Use_Raw_Probability_Rangeland-or-Pasture |
מטרים | ההסתברות הגולמית שחושבה על ידי מודל LCMS לגבי שטחי מרעה. הגדרה: הקטגוריה הזו כוללת כל אזור שמתקיים בו אחד מהתנאים הבאים: א) שטחי מרעה, שבהם הצמחייה היא תערובת של עשבים מקומיים, שיחים, עשבוניים וצמחים דמויי עשב, שצומחים בעיקר כתוצאה מגורמים ותהליכים טבעיים כמו גשם, טמפרטורה, גובה ושריפה, למרות שניהול מוגבל עשוי לכלול גם שריפה מבוקרת וגם רעייה של בעלי חיים מקומיים ופראיים או ב.) שטח מרעה שבו הצמחייה יכולה להיות מגוונת, בעיקר עשבים טבעיים, צמחי מרפא וצמחים רחבי עלים, או צמחייה מנוהלת יותר שבה יש בעיקר מיני עשבים שנזרעו וטופלו כדי לשמור על מצב של מונוקולטורה. |
שינוי טבלת הסיווג
ערך | צבע | תיאור |
---|---|---|
1 | #3d4551 | אורווה |
2 | #f39268 | ירידה איטית |
3 | #d54309 | Fast Loss |
4 | #00a398 | הגברה |
5 | #1b1716 | מסכה של אזור ללא עיבוד |
טבלת סיווג של כיסוי הקרקע
ערך | צבע | תיאור |
---|---|---|
1 | #005e00 | עצים |
2 | #008000 | Tall Shrubs & Trees Mix (SEAK Only) |
3 | #00cc00 | מיקס של שיחים ועצים |
4 | #b3ff1a | תערובת של דשא, עשבים ועצים |
5 | #99ff99 | מיקס של נוף מדברי ועצים |
6 | #b30088 | שיחים גבוהים (דרום-מזרח אסיה בלבד) |
7 | #e68a00 | שיחים |
8 | #ffad33 | תערובת של עשבים, צמחים ועשבי תיבול ושיחים |
9 | #ffe0b3 | מיקס של צמחייה דלילה ושיחים |
10 | #ffff00 | עשב/צמח עשבוני/תבלין |
11 | #aa7700 | Barren & Grass/Forb/Herb Mix |
12 | #d3bf9b | שומם או אטום |
13 | #ffffff | שלג או קרח |
14 | #4780f3 | מים |
15 | #1b1716 | מסכה של אזור ללא עיבוד |
טבלת סיווג של שימוש בקרקע
ערך | צבע | תיאור |
---|---|---|
1 | #efff6b | חקלאות |
2 | #ff2ff8 | פותח |
3 | #1b9d0c | יער |
4 | #97ffff | אדמה בוצית (ביצה) ללא יער |
5 | #a1a1a1 | אחר |
6 | #c2b34a | שטחי מרעה |
7 | #1b1716 | מסכה של אזור ללא עיבוד |
מאפייני התמונה
מאפייני התמונה
שם | סוג | תיאור |
---|---|---|
study_area | מחרוזת | נכון לעכשיו, מערכת LCMS מכסה את ארה"ב הרציפה ואת דרום-מזרח אלסקה. בעתיד הקרוב, התכונה תורחב ותכלול את כל המדינות והטריטוריות בארה"ב. ערכים אפשריים: SEAK או CONUS |
תנאים והגבלות
תנאים והגבלות
שירות היערות של USDA לא נותן אחריות, מפורשת או משתמעת, כולל אחריות לסחירות ולהתאמה למטרה מסוימת, ולא נושא באחריות משפטית או באחריות לדיוק, למהימנות, לשלמות או לשימושיות של הנתונים הגיאוספציאליים האלה, או לשימוש לא תקין או שגוי בנתונים הגיאוספציאליים האלה. הנתונים הגיאוספציאליים האלה והמפות או הגרפיקות שקשורות אליהם הם לא מסמכים משפטיים, והם לא מיועדים לשימוש ככאלה. אסור להשתמש בנתונים ובמפות כדי לקבוע בעלות, תיאורים או גבולות משפטיים, סמכות שיפוט או הגבלות שחלות על קרקע ציבורית או פרטית. יכול להיות שסכנות טבעיות יופיעו בנתונים ובמפות, ויכול להיות שלא. לכן, משתמשים בקרקע צריכים לנקוט משנה זהירות. הנתונים דינמיים ועשויים להשתנות עם הזמן. המשתמש אחראי לאמת את המגבלות של הנתונים הגיאו-מרחביים ולהשתמש בנתונים בהתאם.
הנתונים האלה נאספו באמצעות מימון מממשלת ארה"ב, ואפשר להשתמש בהם ללא הרשאות או עמלות נוספות. אם אתם משתמשים בנתונים האלה בפרסום, במצגת או במוצר מחקר אחר, עליכם לציין את הציטוט הבא:
שירות היערות של משרד החקלאות של ארה"ב. 2021. USFS Landscape Change Monitoring System version 2020.5. סולט לייק סיטי, יוטה.
ציטוטים ביבליוגרפיים
שירות היערות של משרד החקלאות של ארה"ב. 2021. USFS Landscape Change Monitoring System version 2020.5. סולט לייק סיטי, יוטה.
סיור עם פלטפורמת Earth Engine
Code Editor (JavaScript)
var dataset = ee.ImageCollection('USFS/GTAC/LCMS/v2020-5'); var lcms = dataset.filterDate('2020', '2021') // range: [1985, 2020] .filter('study_area == "CONUS"') // or "SEAK" .first(); Map.addLayer(lcms.select('Land_Cover'), {}, 'Land Cover'); Map.addLayer(lcms.select('Land_Use'), {}, 'Land Use'); Map.addLayer(lcms.select('Change'), {}, 'Vegetation Change', false); Map.setCenter(-98.58, 38.14, 4);