iSDAsoil Sand Content

ISDASOIL/Africa/v1/sand_content
데이터 세트 제공
2001-01-01T00:00:00Z–2017-01-01T00:00:00Z
데이터 세트 제작자
Earth Engine 스니펫
ee.Image("ISDASOIL/Africa/v1/sand_content")
태그
africa isda sand soil

설명

0~20cm 및 20~50cm 토양 깊이의 모래 콘텐츠, 예측된 평균 및 표준 편차 밀림이 우거진 지역 (일반적으로 중앙 아프리카)에서는 모델 정확도가 낮으므로 밴딩 (줄무늬)과 같은 아티팩트가 표시될 수 있습니다.

토양 속성 예측은 Innovative Solutions for Decision Agriculture Ltd. (iSDA)에서 원격 감지 데이터 및 분석된 100,000개 이상의 토양 샘플의 학습 세트와 결합된 머신러닝을 사용하여 30m 픽셀 크기로 수행했습니다.

자세한 내용은 FAQ기술 정보 문서를 참고하세요. 문제를 제출하거나 지원을 요청하려면 iSDAsoil 사이트를 방문하세요.

대역

픽셀 크기
30m

밴드

이름 단위 최소 최대 픽셀 크기 설명
mean_0_20 % 2 94 미터

모래 함량, 0~20cm 깊이에서 예측된 평균

mean_20_50 % 2 95 미터

모래 함량, 20~50cm 깊이에서 예측된 평균

stdev_0_20 % 0 144 미터

모래 콘텐츠, 0~20cm 깊이의 표준 편차

stdev_20_50 % 0 143 미터

모래 함량, 20~50cm 깊이에서의 표준 편차

이용약관

이용약관

CC-BY-4.0

인용

인용:
  • Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). doi:10.1038/s41598-021-85639-y

Earth Engine으로 탐색

코드 편집기(JavaScript)

var mean_0_20 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#00204D" label="0-31" opacity="1" quantity="31"/>' +
  '<ColorMapEntry color="#002D6C" label="31-39" opacity="1" quantity="39"/>' +
  '<ColorMapEntry color="#16396D" label="39-43" opacity="1" quantity="43"/>' +
  '<ColorMapEntry color="#36476B" label="43-46" opacity="1" quantity="46"/>' +
  '<ColorMapEntry color="#4B546C" label="46-49" opacity="1" quantity="49"/>' +
  '<ColorMapEntry color="#5C616E" label="49-52" opacity="1" quantity="52"/>' +
  '<ColorMapEntry color="#6C6E72" label="52-54" opacity="1" quantity="54"/>' +
  '<ColorMapEntry color="#7C7B78" label="54-56" opacity="1" quantity="56"/>' +
  '<ColorMapEntry color="#8E8A79" label="56-58" opacity="1" quantity="58"/>' +
  '<ColorMapEntry color="#A09877" label="58-60" opacity="1" quantity="60"/>' +
  '<ColorMapEntry color="#B3A772" label="60-63" opacity="1" quantity="63"/>' +
  '<ColorMapEntry color="#C6B66B" label="63-65" opacity="1" quantity="65"/>' +
  '<ColorMapEntry color="#DBC761" label="65-68" opacity="1" quantity="68"/>' +
  '<ColorMapEntry color="#F0D852" label="68-71" opacity="1" quantity="71"/>' +
  '<ColorMapEntry color="#FFEA46" label="71-100" opacity="1" quantity="75"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';

var mean_20_50 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#00204D" label="0-31" opacity="1" quantity="31"/>' +
  '<ColorMapEntry color="#002D6C" label="31-39" opacity="1" quantity="39"/>' +
  '<ColorMapEntry color="#16396D" label="39-43" opacity="1" quantity="43"/>' +
  '<ColorMapEntry color="#36476B" label="43-46" opacity="1" quantity="46"/>' +
  '<ColorMapEntry color="#4B546C" label="46-49" opacity="1" quantity="49"/>' +
  '<ColorMapEntry color="#5C616E" label="49-52" opacity="1" quantity="52"/>' +
  '<ColorMapEntry color="#6C6E72" label="52-54" opacity="1" quantity="54"/>' +
  '<ColorMapEntry color="#7C7B78" label="54-56" opacity="1" quantity="56"/>' +
  '<ColorMapEntry color="#8E8A79" label="56-58" opacity="1" quantity="58"/>' +
  '<ColorMapEntry color="#A09877" label="58-60" opacity="1" quantity="60"/>' +
  '<ColorMapEntry color="#B3A772" label="60-63" opacity="1" quantity="63"/>' +
  '<ColorMapEntry color="#C6B66B" label="63-65" opacity="1" quantity="65"/>' +
  '<ColorMapEntry color="#DBC761" label="65-68" opacity="1" quantity="68"/>' +
  '<ColorMapEntry color="#F0D852" label="68-71" opacity="1" quantity="71"/>' +
  '<ColorMapEntry color="#FFEA46" label="71-100" opacity="1" quantity="75"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';

var stdev_0_20 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="2"/>' +
  '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="3"/>' +
  '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="4"/>' +
  '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="6"/>' +
  '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="7"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';

var stdev_20_50 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="2"/>' +
  '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="3"/>' +
  '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="4"/>' +
  '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="6"/>' +
  '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="7"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';
var raw = ee.Image("ISDASOIL/Africa/v1/sand_content");
Map.addLayer(
    raw.select(0).sldStyle(mean_0_20), {},
    "Sand content, mean visualization, 0-20 cm");
Map.addLayer(
    raw.select(1).sldStyle(mean_20_50), {},
    "Sand content, mean visualization, 20-50 cm");
Map.addLayer(
    raw.select(2).sldStyle(stdev_0_20), {},
    "Sand content, stdev visualization, 0-20 cm");
Map.addLayer(
    raw.select(3).sldStyle(stdev_20_50), {},
    "Sand content, stdev visualization, 20-50 cm");

var converted = raw.divide(10).exp().subtract(1);

var visualization = {min: 0, max: 3000};

Map.setCenter(25, -3, 2);

Map.addLayer(converted.select(0), visualization, "Sand content, mean, 0-20 cm");
코드 편집기에서 열기