Voglio scambiare dati

Consigliamo la primitiva Crittografia ibrida con il tipo di chiave DHKEM_X25519_HKDF_SHA256, HKDF_SHA256, AES_256_GCM per la maggior parte dei casi d'uso di crittografia a chiave pubblica.

La crittografia della chiave pubblica comporta la protezione dei dati con due chiavi: una pubblica e una privata. La chiave pubblica viene utilizzata per la crittografia e la chiave privata viene utilizzata per la decriptazione. Si tratta di una buona scelta se il mittente non può archiviare i secret e deve criptare i dati con una chiave pubblica.

I seguenti esempi mostrano come iniziare a utilizzare la primitiva di crittografia ibrida:

C++

// A command-line utility for testing Tink Hybrid Encryption.
#include <iostream>
#include <memory>
#include <ostream>
#include <string>

#include "absl/flags/flag.h"
#include "absl/flags/parse.h"
#include "absl/log/check.h"
#include "absl/strings/string_view.h"
#include "util/util.h"
#ifndef TINK_EXAMPLES_EXCLUDE_HPKE
#include "tink/hybrid/hpke_config.h"
#endif
#include "tink/hybrid/hybrid_config.h"
#include "tink/hybrid_decrypt.h"
#include "tink/hybrid_encrypt.h"
#include "tink/keyset_handle.h"
#include "tink/util/status.h"

ABSL_FLAG(std::string, keyset_filename, "", "Keyset file in JSON format");
ABSL_FLAG(std::string, mode, "", "Mode of operation {encrypt|decrypt}");
ABSL_FLAG(std::string, input_filename, "", "Input file name");
ABSL_FLAG(std::string, output_filename, "", "Output file name");
ABSL_FLAG(std::string, context_info, "",
          "Context info for Hybrid Encryption/Decryption");

namespace {

using ::crypto::tink::HybridDecrypt;
using ::crypto::tink::HybridEncrypt;
using ::crypto::tink::KeysetHandle;
using ::crypto::tink::util::Status;
using ::crypto::tink::util::StatusOr;

constexpr absl::string_view kEncrypt = "encrypt";
constexpr absl::string_view kDecrypt = "decrypt";

void ValidateParams() {
  // ...
}

}  // namespace

namespace tink_cc_examples {

Status HybridCli(absl::string_view mode, const std::string& keyset_filename,
                 const std::string& input_filename,
                 const std::string& output_filename,
                 absl::string_view context_info) {
  Status result = crypto::tink::HybridConfig::Register();
  if (!result.ok()) return result;
#ifndef TINK_EXAMPLES_EXCLUDE_HPKE
  // HPKE isn't supported when using OpenSSL as a backend.
  result = crypto::tink::RegisterHpke();
  if (!result.ok()) return result;
#endif

  // Read the keyset from file.
  StatusOr<std::unique_ptr<KeysetHandle>> keyset_handle =
      ReadJsonCleartextKeyset(keyset_filename);
  if (!keyset_handle.ok()) return keyset_handle.status();

  // Read the input.
  StatusOr<std::string> input_file_content = ReadFile(input_filename);
  if (!input_file_content.ok()) return input_file_content.status();

  // Compute the output.
  std::string output;
  if (mode == kEncrypt) {
    // Get the hybrid encryption primitive.
    StatusOr<std::unique_ptr<HybridEncrypt>> hybrid_encrypt_primitive =
        (*keyset_handle)
            ->GetPrimitive<crypto::tink::HybridEncrypt>(
                crypto::tink::ConfigGlobalRegistry());
    if (!hybrid_encrypt_primitive.ok()) {
      return hybrid_encrypt_primitive.status();
    }
    // Generate the ciphertext.
    StatusOr<std::string> encrypt_result =
        (*hybrid_encrypt_primitive)->Encrypt(*input_file_content, context_info);
    if (!encrypt_result.ok()) return encrypt_result.status();
    output = encrypt_result.value();
  } else {  // operation == kDecrypt.
    // Get the hybrid decryption primitive.
    StatusOr<std::unique_ptr<HybridDecrypt>> hybrid_decrypt_primitive =
        (*keyset_handle)
            ->GetPrimitive<crypto::tink::HybridDecrypt>(
                crypto::tink::ConfigGlobalRegistry());
    if (!hybrid_decrypt_primitive.ok()) {
      return hybrid_decrypt_primitive.status();
    }
    // Recover the plaintext.
    StatusOr<std::string> decrypt_result =
        (*hybrid_decrypt_primitive)->Decrypt(*input_file_content, context_info);
    if (!decrypt_result.ok()) return decrypt_result.status();
    output = decrypt_result.value();
  }

  // Write the output to the output file.
  return WriteToFile(output, output_filename);
}

}  // namespace tink_cc_examples

int main(int argc, char** argv) {
  absl::ParseCommandLine(argc, argv);

  ValidateParams();

  std::string mode = absl::GetFlag(FLAGS_mode);
  std::string keyset_filename = absl::GetFlag(FLAGS_keyset_filename);
  std::string input_filename = absl::GetFlag(FLAGS_input_filename);
  std::string output_filename = absl::GetFlag(FLAGS_output_filename);
  std::string context_info = absl::GetFlag(FLAGS_context_info);

  std::clog << "Using keyset from file " << keyset_filename << " to hybrid "
            << mode << " file " << input_filename << " with context info '"
            << context_info << "'." << std::endl;
  std::clog << "The resulting output will be written to " << output_filename
            << std::endl;

  CHECK_OK(tink_cc_examples::HybridCli(mode, keyset_filename, input_filename,
                                       output_filename, context_info));
  return 0;
}

Go


import (
	"bytes"
	"fmt"
	"log"

	"github.com/tink-crypto/tink-go/v2/hybrid"
	"github.com/tink-crypto/tink-go/v2/insecurecleartextkeyset"
	"github.com/tink-crypto/tink-go/v2/keyset"
)

func Example() {
	// A private keyset created with
	// "tinkey create-keyset --key-template=DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_256_GCM --out private_keyset.cfg".
	// Note that this keyset has the secret key information in cleartext.
	privateJSONKeyset := `{
		"key": [{
				"keyData": {
						"keyMaterialType":
								"ASYMMETRIC_PRIVATE",
						"typeUrl":
								"type.googleapis.com/google.crypto.tink.HpkePrivateKey",
						"value":
								"EioSBggBEAEYAhogVWQpmQoz74jcAp5WOD36KiBQ71MVCpn2iWfOzWLtKV4aINfn8qlMbyijNJcCzrafjsgJ493ZZGN256KTfKw0WN+p"
				},
				"keyId": 958452012,
				"outputPrefixType": "TINK",
				"status": "ENABLED"
		}],
		"primaryKeyId": 958452012
  }`

	// The corresponding public keyset created with
	// "tinkey create-public-keyset --in private_keyset.cfg".
	publicJSONKeyset := `{
		"key": [{
				"keyData": {
						"keyMaterialType":
								"ASYMMETRIC_PUBLIC",
						"typeUrl":
								"type.googleapis.com/google.crypto.tink.HpkePublicKey",
						"value":
								"EgYIARABGAIaIFVkKZkKM++I3AKeVjg9+iogUO9TFQqZ9olnzs1i7Sle"
				},
				"keyId": 958452012,
				"outputPrefixType": "TINK",
				"status": "ENABLED"
		}],
		"primaryKeyId": 958452012
  }`

	// Create a keyset handle from the keyset containing the public key. Because the
	// public keyset does not contain any secrets, we can use [keyset.ReadWithNoSecrets].
	publicKeysetHandle, err := keyset.ReadWithNoSecrets(
		keyset.NewJSONReader(bytes.NewBufferString(publicJSONKeyset)))
	if err != nil {
		log.Fatal(err)
	}

	// Retrieve the HybridEncrypt primitive from publicKeysetHandle.
	encPrimitive, err := hybrid.NewHybridEncrypt(publicKeysetHandle)
	if err != nil {
		log.Fatal(err)
	}

	plaintext := []byte("message")
	encryptionContext := []byte("encryption context")
	ciphertext, err := encPrimitive.Encrypt(plaintext, encryptionContext)
	if err != nil {
		log.Fatal(err)
	}

	// Create a keyset handle from the cleartext private keyset in the previous
	// step. The keyset handle provides abstract access to the underlying keyset to
	// limit the access of the raw key material. WARNING: In practice,
	// it is unlikely you will want to use a insecurecleartextkeyset, as it implies
	// that your key material is passed in cleartext, which is a security risk.
	// Consider encrypting it with a remote key in Cloud KMS, AWS KMS or HashiCorp Vault.
	// See https://github.com/google/tink/blob/master/docs/GOLANG-HOWTO.md#storing-and-loading-existing-keysets.
	privateKeysetHandle, err := insecurecleartextkeyset.Read(
		keyset.NewJSONReader(bytes.NewBufferString(privateJSONKeyset)))
	if err != nil {
		log.Fatal(err)
	}

	// Retrieve the HybridDecrypt primitive from privateKeysetHandle.
	decPrimitive, err := hybrid.NewHybridDecrypt(privateKeysetHandle)
	if err != nil {
		log.Fatal(err)
	}

	decrypted, err := decPrimitive.Decrypt(ciphertext, encryptionContext)
	if err != nil {
		log.Fatal(err)
	}

	fmt.Println(string(decrypted))
	// Output: message
}

Java

package hybrid;

import static java.nio.charset.StandardCharsets.UTF_8;

import com.google.crypto.tink.HybridDecrypt;
import com.google.crypto.tink.HybridEncrypt;
import com.google.crypto.tink.InsecureSecretKeyAccess;
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.TinkJsonProtoKeysetFormat;
import com.google.crypto.tink.hybrid.HybridConfig;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

/**
 * A command-line utility for hybrid encryption.
 *
 * <p>It loads cleartext keys from disk - this is not recommended!
 *
 * <p>It requires the following arguments:
 *
 * <ul>
 *   <li>mode: either 'encrypt' or 'decrypt'.
 *   <li>key-file: Read the key material from this file.
 *   <li>input-file: Read the input from this file.
 *   <li>output-file: Write the result to this file.
 *   <li>[optional] contex-info: Bind the encryption to this context info.
 */
public final class HybridExample {
  public static void main(String[] args) throws Exception {
    if (args.length != 4 && args.length != 5) {
      System.err.printf("Expected 4 or 5 parameters, got %d\n", args.length);
      System.err.println(
          "Usage: java HybridExample encrypt/decrypt key-file input-file output-file context-info");
      System.exit(1);
    }

    String mode = args[0];
    if (!mode.equals("encrypt") && !mode.equals("decrypt")) {
      System.err.println("Incorrect mode. Please select encrypt or decrypt.");
      System.exit(1);
    }
    Path keyFile = Paths.get(args[1]);
    Path inputFile = Paths.get(args[2]);
    byte[] input = Files.readAllBytes(inputFile);
    Path outputFile = Paths.get(args[3]);
    byte[] contextInfo = new byte[0];
    if (args.length == 5) {
      contextInfo = args[4].getBytes(UTF_8);
    }

    // Register all hybrid encryption key types with the Tink runtime.
    HybridConfig.register();

    // Read the keyset into a KeysetHandle.
    KeysetHandle handle =
        TinkJsonProtoKeysetFormat.parseKeyset(
            new String(Files.readAllBytes(keyFile), UTF_8), InsecureSecretKeyAccess.get());

    if (mode.equals("encrypt")) {
      // Get the primitive.
      HybridEncrypt encryptor = handle.getPrimitive(HybridEncrypt.class);

      // Use the primitive to encrypt data.
      byte[] ciphertext = encryptor.encrypt(input, contextInfo);
      Files.write(outputFile, ciphertext);
    } else {
      HybridDecrypt decryptor = handle.getPrimitive(HybridDecrypt.class);

      // Use the primitive to decrypt data.
      byte[] plaintext = decryptor.decrypt(input, contextInfo);
      Files.write(outputFile, plaintext);
    }
  }

  private HybridExample() {}
}

Obj-C

GUIDA ILLUSTRATIVA

Python

import tink
from tink import hybrid
from tink import secret_key_access


def example():
  """Encrypt and decrypt using hybrid encryption."""
  # Register the hybrid encryption key managers. This is needed to create
  # HybridEncrypt and HybridDecrypt primitives later.
  hybrid.register()

  # A private keyset created with
  # tinkey create-keyset \
  #   --key-template=DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_256_GCM \
  #   --out private_keyset.cfg
  # Note that this keyset has the secret key information in cleartext.
  private_keyset = r"""{
      "key": [{
          "keyData": {
              "keyMaterialType":
                  "ASYMMETRIC_PRIVATE",
              "typeUrl":
                  "type.googleapis.com/google.crypto.tink.HpkePrivateKey",
              "value":
                  "EioSBggBEAEYAhogVWQpmQoz74jcAp5WOD36KiBQ71MVCpn2iWfOzWLtKV4aINfn8qlMbyijNJcCzrafjsgJ493ZZGN256KTfKw0WN+p"
          },
          "keyId": 958452012,
          "outputPrefixType": "TINK",
          "status": "ENABLED"
      }],
      "primaryKeyId": 958452012
  }"""

  # The corresponding public keyset created with
  # "tinkey create-public-keyset --in private_keyset.cfg"
  public_keyset = r"""{
      "key": [{
          "keyData": {
              "keyMaterialType":
                  "ASYMMETRIC_PUBLIC",
              "typeUrl":
                  "type.googleapis.com/google.crypto.tink.HpkePublicKey",
              "value":
                  "EgYIARABGAIaIFVkKZkKM++I3AKeVjg9+iogUO9TFQqZ9olnzs1i7Sle"          },
          "keyId": 958452012,
          "outputPrefixType": "TINK",
          "status": "ENABLED"
      }],
      "primaryKeyId": 958452012
  }"""

  # Create a keyset handle from the keyset containing the public key. Because
  # this keyset does not contain any secrets, we can use
  # `parse_without_secret`.
  public_keyset_handle = tink.json_proto_keyset_format.parse_without_secret(
      public_keyset
  )

  # Retrieve the HybridEncrypt primitive from the keyset handle.
  enc_primitive = public_keyset_handle.primitive(hybrid.HybridEncrypt)

  # Use enc_primitive to encrypt a message. In this case the primary key of the
  # keyset will be used (which is also the only key in this example).
  ciphertext = enc_primitive.encrypt(b'message', b'context_info')

  # Create a keyset handle from the private keyset. The keyset handle provides
  # abstract access to the underlying keyset to limit the exposure of accessing
  # the raw key material. WARNING: In practice, it is unlikely you will want to
  # use a tink.json_proto_keyset_format.parse, as it implies that your key
  # material is passed in cleartext which is a security risk.
  private_keyset_handle = tink.json_proto_keyset_format.parse(
      private_keyset, secret_key_access.TOKEN
  )

  # Retrieve the HybridDecrypt primitive from the private keyset handle.
  dec_primitive = private_keyset_handle.primitive(hybrid.HybridDecrypt)

  # Use dec_primitive to decrypt the message. Decrypt finds the correct key in
  # the keyset and decrypts the ciphertext. If no key is found or decryption
  # fails, it raises an error.
  decrypted = dec_primitive.decrypt(ciphertext, b'context_info')

Crittografia ibrida

La primitiva di crittografia ibrida combina l'efficienza della crittografia simmetrica con la comodità della crittografia a chiave pubblica (asimmetrica). Chiunque può criptare i dati utilizzando la chiave pubblica, ma solo gli utenti con la chiave privata possono decriptare i dati.

Per la crittografia ibrida, il mittente genera una nuova chiave simmetrica per criptare il testo non crittografato di ogni messaggio e generare un testo crittografato. La chiave simmetrica è incapsulata nella chiave pubblica del destinatario. Per la decriptazione ibrida, la chiave simmetrica viene decapsulata dal destinatario e quindi utilizzata per decriptare il testo crittografato e recuperare il testo non crittografato originale. Per maggiori dettagli su come archiviare o trasmettere il testo crittografato e l'incapsulamento della chiave, consulta Formato cavo Tink Hybrid Encryption.

La crittografia ibrida ha le seguenti proprietà:

  • Segretezza: nessuno può ottenere informazioni sul testo non crittografato criptato (tranne la lunghezza), a meno che non abbia accesso alla chiave privata.
  • Asimmetria: la crittografia del testo crittografato può essere eseguita con la chiave pubblica, ma per la decriptazione, la chiave privata è obbligatoria.
  • Randomizzazione: la crittografia è casuale. Due messaggi con lo stesso testo non crittografato non restituiranno lo stesso testo crittografato. Ciò impedisce agli utenti malintenzionati di sapere quale testo crittografato corrisponde a un determinato testo non crittografato.

La crittografia ibrida è rappresentata in Tink come una coppia di primitive:

  • HybridEncrypt per la crittografia
  • HybridDecrypt per la decrittografia

Parametro informazioni contesto

Oltre al testo non crittografato, la crittografia ibrida accetta un parametro aggiuntivo, context_info, che di solito è costituito da dati pubblici impliciti dal contesto, ma che devono essere associati al testo crittografato risultante. Ciò significa che il testo crittografato ti consente di confermare l'integrità delle informazioni contestuali, ma non ne viene garantita la segretezza o l'autenticità. Le effettive informazioni sul contesto possono essere vuote o nulle, ma per garantire la corretta decrittografia del testo crittografato risultante, è necessario fornire lo stesso valore delle informazioni di contesto per la decriptazione.

Un'implementazione concreta della crittografia ibrida può associare le informazioni contestuali al testo crittografato in vari modi, ad esempio:

  • Utilizza context_info come input di dati associato per la crittografia simmetrica AEAD (cfr. RFC 5116).
  • Usa context_info come input "CtxInfo" per HKDF (se l'implementazione utilizza HKDF come funzione di derivazione delle chiavi, consulta RFC 5869).

Scegli un tipo di tasto

Ti consigliamo di utilizzare il tipo di chiave DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_256_GCM per la maggior parte dei casi d'uso. Questo tipo di chiave implementa lo standard HPKE (Hybrid Public Key Encryption), come specificato in RFC 9180. HPKE è costituito da un meccanismo di incapsulamento delle chiavi (KEM), una funzione di derivazione delle chiavi (KDF) e un algoritmo di crittografia autenticata con dati associati (AEAD).

DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_256_GCM utilizza in modo specifico:

  • KEM: Diffie-Hellman su Curve25519 con HKDF-SHA-256 per ricavare il segreto condiviso.
  • KDF: HKDF-SHA-256 per ricavare il contesto del mittente e del destinatario.
  • AEAD: AES-256-GCM con nonce di 12 byte generati secondo lo standard HPKE.

Altri tipi di chiavi HPKE supportati includono, a titolo esemplificativo:

  • DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_128_GCM
  • DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_CHACHA20_POLY1305
  • DHKEM_P256_HKDF_SHA256_HKDF_SHA256_AES_128_GCM
  • DHKEM_P521_HKDF_SHA512_HKDF_SHA512_AES_256_GCM

Consulta RFC 9180 per ulteriori dettagli sulle scelte relative agli algoritmi per KEM, KDF e AEAD.

Sebbene non sia più consigliato, Tink supporta anche alcune varianti di ECIES, come descritto nello standard ISO 18033-2 di Victor Shoup. Di seguito sono elencati alcuni tipi chiave ECIES supportati:

  • ECIES_P256_HKDF_HMAC_SHA256_AES128_GCM
  • ECIES_P256_COMPRESSED_HKDF_HMAC_SHA256_AES128_GCM
  • ECIES_P256_HKDF_HMAC_SHA256_AES128_CTR_HMAC_SHA256
  • ECIES_P256_COMPRESSED_HKDF_HMAC_SHA256_AES128_CTR_HMAC_SHA256

Proprietà minime

  • Le informazioni su testo non crittografato e contesto possono avere lunghezza arbitraria (entro l'intervallo 0...232 byte)
  • Proteggerti dagli attacchi di testo cifrati scelti adattivi
  • Sicurezza a 128 bit per schemi basati su curva ellittica