Ich möchte Daten austauschen

Für die meisten Anwendungsfälle für die Verschlüsselung mit öffentlichen Schlüsseln empfehlen wir die primitive Hybridverschlüsselung mit dem Schlüsseltyp DHKEM_X25519_HKDF_SHA256, HKDF_SHA256, AES_256_GCM.

Bei der Verschlüsselung mit öffentlichen Schlüsseln werden Daten mit zwei Schlüsseln geschützt: einem öffentlichen und einem privaten. Der öffentliche Schlüssel wird für die Verschlüsselung und der private Schlüssel für die Entschlüsselung verwendet. Dies ist eine gute Wahl, wenn der Absender keine Secrets speichern kann und Daten mit einem öffentlichen Schlüssel verschlüsseln muss.

Die folgenden Beispiele zeigen Ihnen den Einstieg in die einfache Hybridverschlüsselung:

C++

// A command-line utility for testing Tink Hybrid Encryption.
#include <iostream>
#include <memory>
#include <ostream>
#include <string>

#include "absl/flags/flag.h"
#include "absl/flags/parse.h"
#include "absl/log/check.h"
#include "absl/strings/string_view.h"
#include "util/util.h"
#ifndef TINK_EXAMPLES_EXCLUDE_HPKE
#include "tink/hybrid/hpke_config.h"
#endif
#include "tink/hybrid/hybrid_config.h"
#include "tink/hybrid_decrypt.h"
#include "tink/hybrid_encrypt.h"
#include "tink/keyset_handle.h"
#include "tink/util/status.h"

ABSL_FLAG(std::string, keyset_filename, "", "Keyset file in JSON format");
ABSL_FLAG(std::string, mode, "", "Mode of operation {encrypt|decrypt}");
ABSL_FLAG(std::string, input_filename, "", "Input file name");
ABSL_FLAG(std::string, output_filename, "", "Output file name");
ABSL_FLAG(std::string, context_info, "",
          "Context info for Hybrid Encryption/Decryption");

namespace {

using ::crypto::tink::HybridDecrypt;
using ::crypto::tink::HybridEncrypt;
using ::crypto::tink::KeysetHandle;
using ::crypto::tink::util::Status;
using ::crypto::tink::util::StatusOr;

constexpr absl::string_view kEncrypt = "encrypt";
constexpr absl::string_view kDecrypt = "decrypt";

void ValidateParams() {
  // ...
}

}  // namespace

namespace tink_cc_examples {

Status HybridCli(absl::string_view mode, const std::string& keyset_filename,
                 const std::string& input_filename,
                 const std::string& output_filename,
                 absl::string_view context_info) {
  Status result = crypto::tink::HybridConfig::Register();
  if (!result.ok()) return result;
#ifndef TINK_EXAMPLES_EXCLUDE_HPKE
  // HPKE isn't supported when using OpenSSL as a backend.
  result = crypto::tink::RegisterHpke();
  if (!result.ok()) return result;
#endif

  // Read the keyset from file.
  StatusOr<std::unique_ptr<KeysetHandle>> keyset_handle =
      ReadJsonCleartextKeyset(keyset_filename);
  if (!keyset_handle.ok()) return keyset_handle.status();

  // Read the input.
  StatusOr<std::string> input_file_content = ReadFile(input_filename);
  if (!input_file_content.ok()) return input_file_content.status();

  // Compute the output.
  std::string output;
  if (mode == kEncrypt) {
    // Get the hybrid encryption primitive.
    StatusOr<std::unique_ptr<HybridEncrypt>> hybrid_encrypt_primitive =
        (*keyset_handle)
            ->GetPrimitive<crypto::tink::HybridEncrypt>(
                crypto::tink::ConfigGlobalRegistry());
    if (!hybrid_encrypt_primitive.ok()) {
      return hybrid_encrypt_primitive.status();
    }
    // Generate the ciphertext.
    StatusOr<std::string> encrypt_result =
        (*hybrid_encrypt_primitive)->Encrypt(*input_file_content, context_info);
    if (!encrypt_result.ok()) return encrypt_result.status();
    output = encrypt_result.value();
  } else {  // operation == kDecrypt.
    // Get the hybrid decryption primitive.
    StatusOr<std::unique_ptr<HybridDecrypt>> hybrid_decrypt_primitive =
        (*keyset_handle)
            ->GetPrimitive<crypto::tink::HybridDecrypt>(
                crypto::tink::ConfigGlobalRegistry());
    if (!hybrid_decrypt_primitive.ok()) {
      return hybrid_decrypt_primitive.status();
    }
    // Recover the plaintext.
    StatusOr<std::string> decrypt_result =
        (*hybrid_decrypt_primitive)->Decrypt(*input_file_content, context_info);
    if (!decrypt_result.ok()) return decrypt_result.status();
    output = decrypt_result.value();
  }

  // Write the output to the output file.
  return WriteToFile(output, output_filename);
}

}  // namespace tink_cc_examples

int main(int argc, char** argv) {
  absl::ParseCommandLine(argc, argv);

  ValidateParams();

  std::string mode = absl::GetFlag(FLAGS_mode);
  std::string keyset_filename = absl::GetFlag(FLAGS_keyset_filename);
  std::string input_filename = absl::GetFlag(FLAGS_input_filename);
  std::string output_filename = absl::GetFlag(FLAGS_output_filename);
  std::string context_info = absl::GetFlag(FLAGS_context_info);

  std::clog << "Using keyset from file " << keyset_filename << " to hybrid "
            << mode << " file " << input_filename << " with context info '"
            << context_info << "'." << std::endl;
  std::clog << "The resulting output will be written to " << output_filename
            << std::endl;

  CHECK_OK(tink_cc_examples::HybridCli(mode, keyset_filename, input_filename,
                                       output_filename, context_info));
  return 0;
}

Ok


import (
	"bytes"
	"fmt"
	"log"

	"github.com/tink-crypto/tink-go/v2/hybrid"
	"github.com/tink-crypto/tink-go/v2/insecurecleartextkeyset"
	"github.com/tink-crypto/tink-go/v2/keyset"
)

func Example() {
	// A private keyset created with
	// "tinkey create-keyset --key-template=DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_256_GCM --out private_keyset.cfg".
	// Note that this keyset has the secret key information in cleartext.
	privateJSONKeyset := `{
		"key": [{
				"keyData": {
						"keyMaterialType":
								"ASYMMETRIC_PRIVATE",
						"typeUrl":
								"type.googleapis.com/google.crypto.tink.HpkePrivateKey",
						"value":
								"EioSBggBEAEYAhogVWQpmQoz74jcAp5WOD36KiBQ71MVCpn2iWfOzWLtKV4aINfn8qlMbyijNJcCzrafjsgJ493ZZGN256KTfKw0WN+p"
				},
				"keyId": 958452012,
				"outputPrefixType": "TINK",
				"status": "ENABLED"
		}],
		"primaryKeyId": 958452012
  }`

	// The corresponding public keyset created with
	// "tinkey create-public-keyset --in private_keyset.cfg".
	publicJSONKeyset := `{
		"key": [{
				"keyData": {
						"keyMaterialType":
								"ASYMMETRIC_PUBLIC",
						"typeUrl":
								"type.googleapis.com/google.crypto.tink.HpkePublicKey",
						"value":
								"EgYIARABGAIaIFVkKZkKM++I3AKeVjg9+iogUO9TFQqZ9olnzs1i7Sle"
				},
				"keyId": 958452012,
				"outputPrefixType": "TINK",
				"status": "ENABLED"
		}],
		"primaryKeyId": 958452012
  }`

	// Create a keyset handle from the keyset containing the public key. Because the
	// public keyset does not contain any secrets, we can use [keyset.ReadWithNoSecrets].
	publicKeysetHandle, err := keyset.ReadWithNoSecrets(
		keyset.NewJSONReader(bytes.NewBufferString(publicJSONKeyset)))
	if err != nil {
		log.Fatal(err)
	}

	// Retrieve the HybridEncrypt primitive from publicKeysetHandle.
	encPrimitive, err := hybrid.NewHybridEncrypt(publicKeysetHandle)
	if err != nil {
		log.Fatal(err)
	}

	plaintext := []byte("message")
	encryptionContext := []byte("encryption context")
	ciphertext, err := encPrimitive.Encrypt(plaintext, encryptionContext)
	if err != nil {
		log.Fatal(err)
	}

	// Create a keyset handle from the cleartext private keyset in the previous
	// step. The keyset handle provides abstract access to the underlying keyset to
	// limit the access of the raw key material. WARNING: In practice,
	// it is unlikely you will want to use a insecurecleartextkeyset, as it implies
	// that your key material is passed in cleartext, which is a security risk.
	// Consider encrypting it with a remote key in Cloud KMS, AWS KMS or HashiCorp Vault.
	// See https://github.com/google/tink/blob/master/docs/GOLANG-HOWTO.md#storing-and-loading-existing-keysets.
	privateKeysetHandle, err := insecurecleartextkeyset.Read(
		keyset.NewJSONReader(bytes.NewBufferString(privateJSONKeyset)))
	if err != nil {
		log.Fatal(err)
	}

	// Retrieve the HybridDecrypt primitive from privateKeysetHandle.
	decPrimitive, err := hybrid.NewHybridDecrypt(privateKeysetHandle)
	if err != nil {
		log.Fatal(err)
	}

	decrypted, err := decPrimitive.Decrypt(ciphertext, encryptionContext)
	if err != nil {
		log.Fatal(err)
	}

	fmt.Println(string(decrypted))
	// Output: message
}

Java

package hybrid;

import static java.nio.charset.StandardCharsets.UTF_8;

import com.google.crypto.tink.HybridDecrypt;
import com.google.crypto.tink.HybridEncrypt;
import com.google.crypto.tink.InsecureSecretKeyAccess;
import com.google.crypto.tink.KeysetHandle;
import com.google.crypto.tink.TinkJsonProtoKeysetFormat;
import com.google.crypto.tink.hybrid.HybridConfig;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

/**
 * A command-line utility for hybrid encryption.
 *
 * <p>It loads cleartext keys from disk - this is not recommended!
 *
 * <p>It requires the following arguments:
 *
 * <ul>
 *   <li>mode: either 'encrypt' or 'decrypt'.
 *   <li>key-file: Read the key material from this file.
 *   <li>input-file: Read the input from this file.
 *   <li>output-file: Write the result to this file.
 *   <li>[optional] contex-info: Bind the encryption to this context info.
 */
public final class HybridExample {
  public static void main(String[] args) throws Exception {
    if (args.length != 4 && args.length != 5) {
      System.err.printf("Expected 4 or 5 parameters, got %d\n", args.length);
      System.err.println(
          "Usage: java HybridExample encrypt/decrypt key-file input-file output-file context-info");
      System.exit(1);
    }

    String mode = args[0];
    if (!mode.equals("encrypt") && !mode.equals("decrypt")) {
      System.err.println("Incorrect mode. Please select encrypt or decrypt.");
      System.exit(1);
    }
    Path keyFile = Paths.get(args[1]);
    Path inputFile = Paths.get(args[2]);
    byte[] input = Files.readAllBytes(inputFile);
    Path outputFile = Paths.get(args[3]);
    byte[] contextInfo = new byte[0];
    if (args.length == 5) {
      contextInfo = args[4].getBytes(UTF_8);
    }

    // Register all hybrid encryption key types with the Tink runtime.
    HybridConfig.register();

    // Read the keyset into a KeysetHandle.
    KeysetHandle handle =
        TinkJsonProtoKeysetFormat.parseKeyset(
            new String(Files.readAllBytes(keyFile), UTF_8), InsecureSecretKeyAccess.get());

    if (mode.equals("encrypt")) {
      // Get the primitive.
      HybridEncrypt encryptor = handle.getPrimitive(HybridEncrypt.class);

      // Use the primitive to encrypt data.
      byte[] ciphertext = encryptor.encrypt(input, contextInfo);
      Files.write(outputFile, ciphertext);
    } else {
      HybridDecrypt decryptor = handle.getPrimitive(HybridDecrypt.class);

      // Use the primitive to decrypt data.
      byte[] plaintext = decryptor.decrypt(input, contextInfo);
      Files.write(outputFile, plaintext);
    }
  }

  private HybridExample() {}
}

Obj-C

ANLEITUNG

Python

import tink
from tink import hybrid
from tink import secret_key_access


def example():
  """Encrypt and decrypt using hybrid encryption."""
  # Register the hybrid encryption key managers. This is needed to create
  # HybridEncrypt and HybridDecrypt primitives later.
  hybrid.register()

  # A private keyset created with
  # tinkey create-keyset \
  #   --key-template=DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_256_GCM \
  #   --out private_keyset.cfg
  # Note that this keyset has the secret key information in cleartext.
  private_keyset = r"""{
      "key": [{
          "keyData": {
              "keyMaterialType":
                  "ASYMMETRIC_PRIVATE",
              "typeUrl":
                  "type.googleapis.com/google.crypto.tink.HpkePrivateKey",
              "value":
                  "EioSBggBEAEYAhogVWQpmQoz74jcAp5WOD36KiBQ71MVCpn2iWfOzWLtKV4aINfn8qlMbyijNJcCzrafjsgJ493ZZGN256KTfKw0WN+p"
          },
          "keyId": 958452012,
          "outputPrefixType": "TINK",
          "status": "ENABLED"
      }],
      "primaryKeyId": 958452012
  }"""

  # The corresponding public keyset created with
  # "tinkey create-public-keyset --in private_keyset.cfg"
  public_keyset = r"""{
      "key": [{
          "keyData": {
              "keyMaterialType":
                  "ASYMMETRIC_PUBLIC",
              "typeUrl":
                  "type.googleapis.com/google.crypto.tink.HpkePublicKey",
              "value":
                  "EgYIARABGAIaIFVkKZkKM++I3AKeVjg9+iogUO9TFQqZ9olnzs1i7Sle"          },
          "keyId": 958452012,
          "outputPrefixType": "TINK",
          "status": "ENABLED"
      }],
      "primaryKeyId": 958452012
  }"""

  # Create a keyset handle from the keyset containing the public key. Because
  # this keyset does not contain any secrets, we can use
  # `parse_without_secret`.
  public_keyset_handle = tink.json_proto_keyset_format.parse_without_secret(
      public_keyset
  )

  # Retrieve the HybridEncrypt primitive from the keyset handle.
  enc_primitive = public_keyset_handle.primitive(hybrid.HybridEncrypt)

  # Use enc_primitive to encrypt a message. In this case the primary key of the
  # keyset will be used (which is also the only key in this example).
  ciphertext = enc_primitive.encrypt(b'message', b'context_info')

  # Create a keyset handle from the private keyset. The keyset handle provides
  # abstract access to the underlying keyset to limit the exposure of accessing
  # the raw key material. WARNING: In practice, it is unlikely you will want to
  # use a tink.json_proto_keyset_format.parse, as it implies that your key
  # material is passed in cleartext which is a security risk.
  private_keyset_handle = tink.json_proto_keyset_format.parse(
      private_keyset, secret_key_access.TOKEN
  )

  # Retrieve the HybridDecrypt primitive from the private keyset handle.
  dec_primitive = private_keyset_handle.primitive(hybrid.HybridDecrypt)

  # Use dec_primitive to decrypt the message. Decrypt finds the correct key in
  # the keyset and decrypts the ciphertext. If no key is found or decryption
  # fails, it raises an error.
  decrypted = dec_primitive.decrypt(ciphertext, b'context_info')

Hybridverschlüsselung

Die Primitive Hybridverschlüsselung kombiniert die Effizienz der symmetrischen Verschlüsselung mit der Zweckmäßigkeit der (asymmetrischen) Kryptografie mit öffentlichen Schlüsseln. Jeder kann Daten mit dem öffentlichen Schlüssel verschlüsseln, aber nur Nutzer mit dem privaten Schlüssel können die Daten entschlüsseln.

Bei der Hybridverschlüsselung generiert der Absender einen neuen symmetrischen Schlüssel, um den Klartext jeder Nachricht zu verschlüsseln und so einen Geheimtext zu erzeugen. Dieser symmetrische Schlüssel wird mit dem öffentlichen Schlüssel des Empfängers gekapselt. Bei der Hybridentschlüsselung wird der symmetrische Schlüssel vom Empfänger entkapselt und dann zum Entschlüsseln des Geheimtexts verwendet, um den ursprünglichen Klartext wiederherzustellen. Weitere Informationen zum Speichern oder Übertragen des Geheimtextes zusammen mit der Schlüsselkapselung finden Sie unter Tink-Hybridverschlüsselungsdrahtformat.

Die Hybridverschlüsselung hat folgende Attribute:

  • Vertraulichkeit: Niemand kann Informationen über den verschlüsselten Klartext abrufen (mit Ausnahme der Länge), es sei denn, er hat Zugriff auf den privaten Schlüssel.
  • Asymmetrie: Der Geheimtext kann mit dem öffentlichen Schlüssel verschlüsselt werden. Für die Entschlüsselung ist jedoch der private Schlüssel erforderlich.
  • Zufälligkeit: Die Verschlüsselung wird zufällig durchgeführt. Zwei Nachrichten mit demselben Klartext liefern nicht denselben Geheimtext. Dadurch wird verhindert, dass Angreifer erkennen, welcher Geheimtext einem bestimmten Klartext entspricht.

Die Hybridverschlüsselung wird in Tink als ein Primitivpaar dargestellt:

  • HybridEncrypt für die Verschlüsselung
  • HybridDecrypt zur Entschlüsselung

Parameter für Kontextinformationen

Zusätzlich zum Klartext akzeptiert die Hybridverschlüsselung den zusätzlichen Parameter context_info. Dies sind normalerweise öffentliche Daten, die implizit aus dem Kontext stammen, aber an den resultierenden Geheimtext gebunden sein sollten. Dies bedeutet, dass Sie mit dem Geheimtext die Integrität der Kontextinformationen bestätigen können. Es gibt jedoch keine Garantien für die Geheimhaltung oder Authentizität. Die tatsächlichen Kontextinformationen können leer oder null sein. Damit der resultierende Geheimtext jedoch richtig entschlüsselt werden kann, muss für die Entschlüsselung derselbe Kontextinformationswert angegeben werden.

Eine konkrete Implementierung der Hybridverschlüsselung kann Kontextinformationen auf verschiedene Weise an den Geheimtext binden, z. B.:

  • Verwenden Sie context_info als verknüpfte Dateneingabe für die symmetrische AEAD-Verschlüsselung (siehe RFC 5116).
  • Verwenden Sie context_info als „CtxInfo“-Eingabe für HKDF (wenn die Implementierung HKDF als Schlüsselableitungsfunktion verwendet, siehe RFC 5869).

Schlüsseltyp auswählen

Wir empfehlen für die meisten Anwendungsfälle die Verwendung des Schlüsseltyps DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_256_GCM. Dieser Schlüsseltyp implementiert den HPKE-Standard (Hybrid Public Key Encryption) gemäß RFC 9180. HPKE besteht aus einem Schlüsselkapselungsmechanismus (Key Encapsulation Verfahren, KEM), einer Schlüsselableitungsfunktion (Key Derivation Function, KDF) und einem AEAD-Algorithmus (Authenticated Encryption with Associated Data).

DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_256_GCM verwendet speziell:

  • KEM: Diffie-Hellman über Kurve25519 mit HKDF-SHA-256, um das gemeinsame Secret abzuleiten.
  • KDF: HKDF-SHA-256 zur Ableitung des Sender- und Empfängerkontexts.
  • AEAD: AES-256-GCM mit 12-Byte-Nonces, die nach dem HPKE-Standard generiert wurden.

Weitere unterstützte HPKE-Schlüsseltypen sind unter anderem:

  • DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_AES_128_GCM
  • DHKEM_X25519_HKDF_SHA256_HKDF_SHA256_CHACHA20_POLY1305
  • DHKEM_P256_HKDF_SHA256_HKDF_SHA256_AES_128_GCM
  • DHKEM_P521_HKDF_SHA512_HKDF_SHA512_AES_256_GCM

Weitere Informationen zu den Algorithmusoptionen für KEM, KDF und AEAD finden Sie unter RFC 9180.

Tink wird zwar nicht mehr empfohlen, unterstützt aber auch einige ECIES-Varianten, wie in der Norm ISO 18033-2 von Victor Shoup beschrieben. Einige unterstützte ECIES-Schlüsseltypen sind unten aufgeführt:

  • ECIES_P256_HKDF_HMAC_SHA256_AES128_GCM
  • ECIES_P256_COMPRESSED_HKDF_HMAC_SHA256_AES128_GCM
  • ECIES_P256_HKDF_HMAC_SHA256_AES128_CTR_HMAC_SHA256
  • ECIES_P256_COMPRESSED_HKDF_HMAC_SHA256_AES128_CTR_HMAC_SHA256

Minimale Properties

  • Klartext- und Kontextinformationen können eine beliebige Länge haben (im Bereich von 0 bis 232 Byte).
  • Schutz vor Angriffen mit adaptivem ausgewähltem Geheimtext
  • 128-Bit-Sicherheit für Elliptische-Kurven-basierte Schemas