稀疏张量方言代码库结构
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
稀疏张量方言位于 MLIR 代码库中。
库和 C++ 文件
Python 绑定和 CAPI
MLIR 基准
测试
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-07-26。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["没有我需要的信息","missingTheInformationINeed","thumb-down"],["太复杂/步骤太多","tooComplicatedTooManySteps","thumb-down"],["内容需要更新","outOfDate","thumb-down"],["翻译问题","translationIssue","thumb-down"],["示例/代码问题","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-07-26。"],[[["The Sparse Tensor Dialect, residing within the MLIR repository, provides infrastructure for representing and processing sparse tensors."],["It offers comprehensive support including header files, a runtime support library, Python bindings, and a C API for integration with external systems."],["The dialect includes a benchmark suite for performance evaluation and a robust testing framework encompassing file checks, end-to-end tests, unit tests, and CAPI/Python binding tests."],["Developers can leverage the Sparse Tensor Dialect to optimize computations involving sparse data structures within the MLIR ecosystem."]]],[]]