理解度をチェックする
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
おすすめシステムを使う理由は何ですか。
レコメンデーション エンジンがあれば、コンテンツを簡単にブラウジングできます。
さらに、優れたレコメンデーション システムは、ユーザーが自分では思いつかないようなものを見つけるのに役立ちます。
ML をあらゆる環境に投入する必要がある
一見、そう思われるかもしれませんが、実際には、ML を使用する方がはるかに正当な理由があります。
ユーザーをスポンサー アイテムに誘導する場合。
これは、ML ソリューションを使用する大きな理由ではありません。
レコメンデーション システムの主なコンポーネントは何ですか。
候補生成、スコアリング、再ランキング
おつかれさまでした!これらは、レコメンデーション システムの 3 つの主要なコンポーネントです。
埋め込み、類似性の指標、提供
これらの要素はレコメンデーション システムに関連していますが、主要なコンポーネントではありません。
行列分解、DNN、再ランキング
再ランキングはコンポーネントですが、行列分解と DNN は候補生成ツールの一種です。
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2024-07-26 UTC。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["必要な情報がない","missingTheInformationINeed","thumb-down"],["複雑すぎる / 手順が多すぎる","tooComplicatedTooManySteps","thumb-down"],["最新ではない","outOfDate","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["サンプル / コードに問題がある","samplesCodeIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2024-07-26 UTC。"],[],[]]